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ABSTRACT
Targeted social programs, such as conditional cash transfers

(CCTs), are a major vehicle for poverty alleviation through-

out the developing world. Only in Mexico and Brazil, these

reach nearly 80 million people (25% of population), dis-

tributing +8 billion USD yearly. We study the potential

efficiency and fairness gains of targeting CCTs by means of

artificial intelligence algorithms. In particular, we analyze

the targeting decision rules and underlying poverty predic-

tion models used by national-wide CCTs in three middle-

income countries (Mexico, Ecuador, and Costa Rica). Our

contribution is three-fold: 1) We show that, absent explicit

measures aimed at limiting algorithmic bias, targeting rules

can systematically disadvantage population subgroups, such

as incurring exclusion errors 2.3 times higher on poor urban

households compared to their rural counterparts, or exclu-

sion errors 2.2 times higher on poor elderly households com-

pared with poor traditional nuclear families. 2) We con-

strain the targeting algorithms towards achieving fairness,

and show that, for example, mitigating urban/rural unfair-

ness in Ecuador can imply substantial costs in overall accu-

racy, yet, we also show that in the case of Mexico mitigating

unfairness across four different types of family structures can

be achieved at no significant accuracy costs. 3) Finally, we

provide an interactive decision-support platform that allows

even non-expert stakeholders to explore the space of possible

AI-based decision rules, visualize their implications in terms

of efficiency, fairness, and their trade-offs; and ultimately

choose designs that best fit their preferences and context.
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1. INTRODUCTION
As automated decision-making systems have become increas-

ingly ubiquitous—e.g., in criminal justice[18], medical diag-

nosis and treatment[17], human resource management[7], so-

cial work[12], credit[15], and insurance—there is widespread

concern about how these can deepen social inequalities and

systematize discrimination [21, 20]. Consequently, substan-

tial work on defining, measuring, and optimizing for algo-

rithmic fairness has surged in recent years. This rising field

of research has focused on offline domains such as the crim-

inal justice system [9, 4], child maltreatment hotlines[10],

and predictive policing[22]; as well as online domains such as

targeted advertising[23], search engines[13], and face recog-

nition algorithms[5].

Targeted social welfare programs. The present work

focuses on targeted social welfare programs, which encom-

pass some of today’s largest algorithmic decision-making

systems in offline domains, and whose decisions bare sub-

stantial impact on the the lives of millions of people world-

wide. In particular, we focus on conditional cash trans-

fer programs (CCTs), which provide a financial stipend to

families in poverty, and require them to comply with “co-

responsibilities”, such as maintaining children in school, and

attending regular medical appointments[11].

CCTs are a major vehicle for poverty alleviation in the de-

veloping world. There are more than 100 national CCTs

worldwide (Figure S1 for world map of national CTTs)[2].

Only in Mexico and Brazil, for example, these reach nearly

80 million people ( 25% of the population), distributing +8

billion USD yearly (0.3% of GDP)[16].

CCTs are targeted in the sense that only a subset of the

population, generally those below a specified poverty line, is

eligible to programs’ benefits. However, reliable income data

is typically not available and costly to procure, as households
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Poverty ratio N No. of Variables
Mexico 35% 70,311 183
Ecuador 25% 30,338 126

Costa Rica 21% 10,711 165

Table 1: Household survey data statistics. This table
presents the poverty ratio in the households in the survey,
and the number of observations in each survey.

in the target population participate mainly in informal eco-

nomic sectors. Hence targeting of CCTs most commonly

relies on poverty prediction algorithms that decide house-

holds’ eligibility based on observable and less costly proxy

data, such as education levels, demographics, and the assets

and services of households[16].

Fairness and Efficiency in CCTs. Substantial previous

literature has looked into the accuracy of different targeting

methods[1, 8]. Yet, the potential existence of algorithmic

unfairness—in terms of how these inference systems might

differentially affect population subgroups—and the ways in

which program managers can mitigate disparities, have not

been thoroughly studied.

Summary of contributions. The present work shows

quantitatively how 1) substantial disparities across subgroups

may be introduced by the targeting systems of CCTs, 2)

disparities can be effectively mitigated by constraining algo-

rithms towards fairness, and 3) that such constraints imply

costs in terms of the overall targeting accuracy of the system

(inclusion and exclusion errors). Finally, we propose an AI-

based decision-support tool for helping program managers

navigate the space of possible decision rules, in terms of their

performance and trade-offs across accuracy and fairness.

2. DATA
For this study, we use data from three countries to train and

test our models. The countries are Costa Rica, Ecuador

and Mexico. We chose these countries as they represent

large (121M), medium (16M) and small (4M) populations,

and that is reflected in the number of observations in our

datasets. Despite the differences, our methods worked in all

of them.

Household surveys data. We used household surveys

data as those are the publicly available best proxies for

household’s income. Household surveys are applied peri-

odically in all our three countries to a representative sample

of the population.

These surveys are extensive, which translates into reliable

detailed information. As an example, Mexico’s council on

evaluation of social development policies (CONEVAL) uses

ENIGH, the same survey we use, to measure poverty in the

country. Table 1 presents basic details on the surveys.

The surveys include the total income per household, demo-

graphic variables, and variables related to the physical state

of the household and the objects it contains. Examples of

the former are education levels, ages, and genders. Examples

of the latter are construction materials, number of rooms,

utilities available, cars, and appliances.

3. POVERTY PREDICTIONS
Prediction algorithms

In order to estimate poverty we implement a series of pre-

diction algorithms. The algorithms take as input the series

of variables described in Section 2, and use those to estimate

whether households are below or above the poverty line. We

trained the algorithms with 75% of the data, and measured

all performance outcomes with the remaining 25% (test set).

While testing algorithms from ML and traditional regres-

sions, gradient boosted trees yielded the best results in test

sets across all countries. Hence all results in what follows of

this paper were computed based on it. A full comparison of

performance across algorithms is beyond the scope of this

paper.

The output of classification algorithms are probability scores

on the likelihood of a household being poor. Targeting de-

cisions are based on those scores. A score threshold is set

by program managers, above which households are consider

eligible for the program.

Results

Imperfections in poverty estimations will lead to two kinds

of errors: exclusion and inclusion errors. The first refers to

the proportion of actually poor people who did not receive

the aid whilst the second refers to the proportion of aided

households which were in fact above the poverty line, there-

fore not eligible. We use these errors to assess quality in the

estimator. There is a natural trade off between these two.

If a program wants to lower its exclusion error, by increas-

ing the number of receivers, it will tend to take households

which are increasingly likely to be non-poor (as the likeliest

are the first to be selected). This will result in higher inclu-

sion errors. In the extremes, having zero beneficiaries means

0% inclusion error and 100% exclusion error; and having the

whole population receive the program will translate into the

maximum inclusion error (equal to the proportion of non-

poor people in the population) and 0% exclusion error.

Once a threshold over poorness scores is decided, households

above the threshold will receive the program and houses be-

low will not. Increasing the threshold will lower the inclusion

error while also increasing the exclusion error, forming the

exclusion-inclusion trade-off. Figure1 shows results of com-

puting such trade-off for the three countries in this study.
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Figure 1: Inclusion and exclusion errors.

A line is plotted for each country, showing the exclusion er-

ror entailed by each achievable level of inclusion error. For

example, we see that Mexico’s CTT can achieve an exclu-

sion error as low as 10% while incurring an inclusion error

of 40%.

4. DISPARATE IMPACT AND THE COST
OF FAIRNESS

Notions of fairness. Several notions of fairness and their

corresponding formalizations have been proposed, most of

which require that statistical properties hold across two or

more population subgroups. Demographic or statistical par-

ity requires that decisions are independent from group mem-

bership [6, 24, 19], such that P{Ŷ = 1|A = 0} = P{Ŷ =

1|A = 1}, for the case of binary classification and sensitive

attribute A ∈ {0, 1}. Most recent work focuses on merito-

cratic notions of fairness, or error rate matching [14, 3], such

as requiring population subgroups to have equal false posi-

tive rates (FPR), equal false negative rates (FNR), or both

(equalized odds), i.e., P{Ŷ = 1|A = 0, Y = y} = P{Ŷ =

1|A = 1, Y = y}, y ∈ 0, 1. In this work we adopt the latter

set of fairness notions. Refer to [25] for a survey on compu-

tational measures of fairness.

In the context of CCTs, we measure fairness of targeting sys-

tems in terms of how similar their exclusion errors are across

population subgroups. As CCTs provide a positive benefit,

this measure of fairness captures the notion of equality of

opportunity [14], where, for example, we require poor single-

parent households to have the same probability of accessing

the social program as poor traditional nuclear families.

Observed unfairness. Figure 2 shows the distribution of

exclusion errors across population subgroups—urban/rural,

and family type subgroups—when applying the poverty pre-

diction algorithm without fairness constraints, and compares

it against its fairness-constrained modification. It is shown

that unconstrained algorithms can incur substantially differ-

ent exclusion errors to different population subgroups. For

example, poor urban households in Ecuador are 2.3 times

more likely to be excluded from the program than their rural

counterparts. Similarly, poor elderly households in Mexico

are 2.2 times more likely to be excluded than their tradi-

tional nuclear family counterparts.

Mitigating unfairness. We introduced fairness constraints

by establishing differentiated thresholds for each population

subgroup, and adjusting them to guarantee parity in exclu-

sion errors across subgroups, i.e., guaranteeing equality of

opportunity[14]. The second column of Figure2 shows the

results (note that all methods are calibrated on the train-

ing set, and results computed on the test set). We see that

the method was effective in mitigating exclusion disparities

across subgroups. For example, exclusion error rates of poor

urban and rural households in Ecuador were equalized, as

well as exclusion errors across family types in Mexico.

The cost of fairness.

We measure the cost of fairness as the performance degrada-

tion (which can be translated either as more exclusion error,

more inclusion error, or both) resulting from constraining a

targeting system to achieve similar exclusion errors across

population subgroups. Figure 3 shows the cost of a chieving

fairness for the three countries analyzed. It shows that the

cost varies both across the protected attribute and country

context: for some cases the cost is negligible, such as be-

tween rural and urban groups in Mexico and Costa Rica;

yet, in other cases costs can be considerable, such as be-

tween rural and urban groups in Ecuador (increasing both

errors from 38% to 44%). Lastly, we see encouraging results

in cases like unfairness between family types in Mexico and

Costa Rica, where rather stark disparities can be mitigated

with moderate costs (increasing both errors from 28% to

30% in Mexico, and increasing both errors from 44% to 46%

in Costa Rica).

5. CONCLUSIONS AND FUTURE WORK
The present work shows that, absent explicit measures for

mitigating unfairness, targeting algorithms of social welfare

programs can introduce relevant and systematic disparities

in the exclusion errors of population subgroups (i.e., ur-

ban/rural and family structure types). We also show that

disparities can be attenuated by introducing fairness con-

straints, yet these may come at significant costs in overall

prediction efficiency across the population.

This work highlights the relevance of making transparent for
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key decision-makers both the accuracy and fairness implica-

tions of the space of possible algorithmic designs, as well

as the trade-offs among these. We developed an AI-based

decision-support tool to aid program managers in navigat-

ing such space of possibilities, and making informed choices.

We look forward to demo the tool at D4GX 2018.
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A) B)

C) D)

E) F)

Each group of bars relates to a thresholding strategy where we equal exclusion and inclusion error. The first row (A and
B) has Mexico’s data, the second (C and D) Ecuador’s, and the third (E and F) Costa Rica’s. The first column (A, C
and E) measures inclusion in rural and urban groups, whilst the second (B, D and F) measures it for different types of
families. On each plot we have two groups, one group is the most accurate thresholding strategy, and the other is the
most fair thresholding strategy (both subject to the arbitrary restriction that inclusion and exclusion error must be equal).
Both strategies set a threshold to each of the groups, however the first prioritizes accuracy and the second is constrained to
having the same exclusion error per group. Although this is not exactly the case, this is due to the fact that the strategies
were calculated on the training set, but the performance is shown on the test set. This shows how well these algorithms
would generalize to new observations.

Figure 2: Inequality across population subgroups.
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A) B)

C) D)

E) F)

Each plot shows the inclusion, exclusion and unfairness (measured as standard deviation of the exclusion error amongst
groups) and shown by coloring of different thresholding strategies. The first row (A and B) has Mexico’s data, the second
(C and D) Ecuador’s, and the third (E and F) Costa Rica’s. The first column (A, C and E) measures inclusion in rural
and urban groups, whilst the second (B, D and F) measures it for different types of families. Each point in the plot is a
thresholding strategy which can be either optimal, most fair, or something in between.

Figure 3: Unfairness, exclusion and inclusion errors, for thresholding strategies
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Figure 4: National cash transfer programs worldwide[2].
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