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ESG Investment Insights 

Extracting Signals from ESG Data 
Unquestionably investors and asset managers with a mandate to adopt Sustainable 
Investing principles are moving beyond the use of ESG scores and looking to 
incorporate direct measures of ESG performance into their portfolio construction 
processes. This approach is known as ESG Integration, and extends the more 
traditional process of screening based on ESG scores and business involvement. 

ESG Integration is meant to rely on specific, granular data in addition to composite 
scores. However, such data are currently not standardized and often poorly 
disclosed, especially when considering a global investable universe. In our mind there 
are several key questions at this juncture, including 

 What does the data available today allow us to do? What are the limitations? 

 Are best practices being developed?  

 Can ESG Integration give an ‘edge’? 

 Is quantifying ESG signal more about capturing risk or opportunity? How should 
this affect signal construction? 

 Are there dependencies between signal construction and portfolio construction? 
For example, at what point does one adjust for biases and tilts? 

Definitive answers to such questions cannot be determined by a single paper, but our 
hope is that the following guidance developed herein is found to be useful: 

 Established statistical techniques can and should be used to extract signal from 
data that is sparse and reported with lags.  

 Best practices can be borrowed from systematic strategy research as well as from 
other disciplines, including actuarial science and econometrics. 

 Construction of multiple ESG signals can facilitate the creation of strategies that 
better align with sustainability goals. Such signals need to be based on both 
quantitative analysis and a value system, such as one embodied in various ESG 
frameworks. It is not yet possible to defend all decisions in terms of backtesting. 

 While it is believed that sustainability principles can be used to identify 
opportunities, there is not a long historical record of quantitative outcomes to 
analyze. However, our results do add to existing research suggesting that ESG 
signals are materially correlated with lower return volatility. 

 There are reporting and nominal performance biases that are correlated with 
company size and varies among industries. Without compensating for these, it is 
possible to introduce unintended tilts into one’s portfolio. 

We provide evidence for these conclusions by taking a constructive approach, 
starting with low-level data and “building up” – avoiding the use of ESG scores 
entirely. The basis for the results in this paper is a case study involving 280 US 
companies in resource-intensive industries over the 5 year period from 2013-2017. 
The data set is one recently enhanced by Bloomberg LP, and is available to clients via 
the terminal and as a data feed. 

Previous papers in this series largely focused on index construction using third-party 
scoring data. As introduced above, the goal here is to examine ESG data that is new 
to the index and portfolio construction process.  
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ESG Frameworks 

Frameworks form the basis for identifying ESG signals. They not only inform investors as 
to what are the most relevant and financially material sustainability issues, but they also 
indicate to corporations what to disclose. These fields correspond to various 
sustainability goals and generally reflect inputs and outcomes that are measurable. 
Moreover, fields are grouped into a hierarchy that serves as an organizing roadmap for 
signal detection and aggregation. Groups lower in the hierarchy may serve to amplify 
univariate signal and cancel noise, while groups higher up serve a purpose of reflecting 
broader ESG themes consisting of multi-factor signals. 

ESG risks and opportunities differ by industry, so the reality is that there is no single 
framework or list of data fields that apply across the board. Commonly used frameworks 
are listed in Table 1.  

Organization Areas of Focus 

GRI 
Global Reporting Initiative  

Offers standards for sustainability reporting 
on economic, environment and social 
impacts for a wide range of stakeholders.  

SASB 
Sustainability Accounting Standards 
Board 

Organizes sustainability topics spanning 
Environment, Social Capital, Human Capital, 
Business Model and Governance into 
industry-specific groups with an emphasis on 
financial materiality.  

IIRC 
International Integrated Reporting 
Committee 

Principles-based approach encouraging both 
qualitative and quantitative disclosure into 
financial statements. Standardization is 
secondary to flexibility and context. 

TCFD 
Taskforce on Climate-Related 
Financial Disclosures 

Develops recommendations for voluntary 
climate-related financial disclosures in 
conjunction with the Financial Stability 
Board with emphasis on scenario reporting. 

CDP 
Carbon Disclosure Project (formerly) 

Repository of self-reported data by 
corporates and cities, focusing on Climate 
Change, Water and Forests 

EU Taxonomy Developing climate-related disclosure 
benchmarks and regulations, initially 
focusing on carbon, greenhouse gasses and 
alignment with the Paris Agreement. 

Table 1. Various frameworks for reporting and organizing ESG data. 

Additionally many investment managers and asset owners develop their own 
frameworks based on their house views of opportunities and risks among ESG factors. 

Figure 1 shows a sample ESG framework to give a sense as to the breadth of issues being 
considered. It is a truncated and simplified collection of factors for demonstrating the 
main ideas in this paper, covering some representative issues within each of the three 
ESG pillars.  Fully-fledged frameworks can contain nearly 200 individual metrics, with 
materiality varying by sector and industry.  

Additional information concerning frameworks and ESG integration can be found in the 
references cited in the bibliography. 
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Figure 1: Sample ESG framework. Factors analyzed and incorporated into this study are highlighted with green borders. 
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Case Study Dataset 

Our universe is a set of public US companies in energy-intensive industries. This is so that 
we have a relatively homogenous set of ESG issues and expected behaviors, which 
simplifies this expository study. 

We observe that each of the 3 sectors has approximately the same number of companies. 
However, while Energy and Industrials have comparable market capitalizations, 
Materials has roughly half. 

Sector Industry Companies Market Cap 

Energy 
 

108 1426 
 

Oil, Gas & Coal 108 1426 

Industrials 
 

94 1678 
 

Aerospace & Defense           20 698 
 

Electrical Equipment          26 500 
 

Industrial Services            8 49 
 

Machinery 30 343 
 

Transportation Equipment 10 88 

Materials 
 

78 696 
 

Chemicals 34 412 
 

Construction Materials 9 59 
 

Containers & Packaging 14 106 
 

Iron & Steel 10 43 
 

Metals & Mining 11 66 

Table 2. Summary statistics for companies used in the case study. Sector and Industry classifications are BICS. Market 
capitalizations are in USD billions as of October 2019. Source: Bloomberg. 

To avoid including companies before they became public we required each company’s 
incorporation date to be prior to the end of the reporting period and also applied a 
heuristic of having 3 or more board members. This results in small variations in the 
number of companies in the different years within the study. 

The time period for the case study is reporting years 2013 through 2017, inclusive. There 
are significant lags in reporting: as of mid-2019, the majority of 2018 has not yet been 
disseminated and processed. Furthermore, we emphasize that we work with annual time 
series. Some fields, particularly in Governance, can change more frequently because 
they are reported through regulatory filings. However, many fields are only made 
available on an annual basis through corporate sustainability reports.  

Table 3 shows the number of available fields per industry for the 2017 reporting year. 
Clearly disclosure are higher for Governance than Environmental and Social dimensions: 
average industry disclosure rates are 99% for Governance, 35% for Social and 23% for 
Environmental fields. Furthermore, despite our hopes for homogeneity, it is evident that 
the Hazardous Material Spill fields do not apply to all: various industries, including 
Industrial Services and Iron & Steel do not have any disclosure. Removing these fields 
from consideration, the average Environmental disclosure rate is 30%. 
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Aerospace 
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Machinery Transportation 
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Chemicals Construction 
Materials 
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Iron & 
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 GHG Scope 2 21 6 10 1 5 2 20 1 9 0 5 
E Total Energy  Consumption 13 6 7 1 5 3 22 1 8 2 3 
 GHG Scope 1 27 7 10 1 6 2 20 1 9 1 5 
 Amount of HazMat Spills 26 0 0 0 1 0 0 1 0 0 1 
 Number of  HazMat Spills 24 0 0 0 1 0 7 1 0 0 4 
 Indigenous Rights Policy 100 1 1 0 0 0 0 0 1 9 11 
 Fatalities - Contractors 23 2 1 2 2 0 12 1 2 1 5 
 Fatalities - Employees 24 2 2 2 3 2 14 1 3 2 5 

S TRIR - Contractors 21 0 0 0 0 1 7 1 0 0 1 
 LTIR - Contractors 13 0 0 0 0 0 5 1 0 0 1 
 TRIR 49 7 7 2 7 4 26 3 8 5 4 
 LTIR 23 5 7 2 6 2 16 4 6 1 2 
 Human Rights Policy 105 20 24 8 29 10 34 8 12 10 11 
 Board Size 105 20 24 8 29 10 34 8 12 10 11 
 Chairman Tenure 104 20 24 8 29 10 34 8 12 10 10 
 Chairman Age 105 20 24 8 29 10 34 8 12 10 10 
 # Board Members Serving > 10Y 103 20 24 8 29 10 34 8 12 10 11 

G # Board Members Serving > 5Y  103 20 24 8 29 10 34 8 12 10 11 
 % of Board that are Women 103 20 24 8 29 10 34 8 12 10 11 
 Board Average Age 101 18 23 8 29 10 34 8 12 10 11 
 Oldest Director Age 101 18 23 8 29 10 34 8 12 10 11 
 Youngest Director Age 101 18 23 8 29 10 34 8 12 10 11 
 % Independent Directors 104 20 24 8 29 10 34 8 12 10 11 

Table 3: Summary statistics for data field availability per field and industry in 2017.  Numbers indicate the number of tickers for which a data point is available in the Bloomberg data set. 
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Computational Framework 

Visually, if we turn the ESG framework tree on its side, we get a picture that looks similar 
to a feed-forward neural network – the difference being that nodes connect based on the 
ESG framework rather than all nodes connecting to all others. This view offers 
motivation and rough guidelines for determining the role of each layer.  

Role and guidelines for univariate signals 

We need to translate raw data, which may be in various units, to a standard reference 
frame. The leftmost nodes in Figure 2 represent raw data. In the first layer, we transform 
and normalize univariate data – that is, one input and one output. We use a zero to one 
scale, where naturally the value of 1 is interpreted as “good”, that is, indicating that some 
aspect of an ESG goal is being fully met.  

There are two basic approaches to this first signal layer. In a few cases, and depending 
one’s purpose for measuring ESG signal, it can make sense to define the signal curve in 
terms of external performance guidelines. Gender Diversity and Fatalities are some of 
the most natural signals for such treatment: sustainability investors do not need to 
“learn” target levels for gender diversity or fatality rates are from the data. Similarly, it is 
straightforward to assign signal values of 0 or 1 to fields that indicate whether or not a 
company has a Human Rights policy without quantitative analysis. That said, for ESG 
integration specifically, it is open to debate as to whether or not relative performance 
versus peers is also relevant. In particular, if the investment objectives include tracking 
error constraints, it becomes necessary to identify the better performers within a peer 
group. Note that one can convert signals tied to external standards to relative 
performance simply by ranking within peer groups, whereas the reverse is not possible. 

However, when there are no widely-accepted external standards, it is natural to base 
signals on represent percentiles. This requires a determination of peer groups up front. 
Groups could be formed by industry, company size, geographical region and several 
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Figure 2: The connection between the ESG framework and computational framework. The conversion to a zero to 
one signal corresponds to the machine learning concept of applying activation functions to the raw input data. Of 
course, activation functions usually require parameters, which in the first (univariate) layer are denoted by θ. 
Common parameters for subsequent layers include weights and are labeled w. 
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other firm characteristics. It is also possible to apply clustering algorithms, which allows 
for the data to ‘reveal’ clustered behavior.  

Note there are advantages to using large peer groups, including setting the peer group 
to be the entire investible universe. Larger peer groups facilitate broader comparisons – 
something that is of interest to many sustainability investors. But from a traditional 
mean-variance portfolio construction vantage point, it is actually essential to have un-
normalized indicators of future risk and performance: one can accept higher levels of 
(ESG) risk if the return can be expected to compensate for that risk. 

Once one settles on desired peer groups, there are two basic choices for estimating 
percentiles. First one might decide on a non-parametric approach and use the empirical 
quartiles (or some other quantile). One benefit of doing so is parameter reduction: 
computing these quantiles only relies on sorting (and the choice of quantile). One 
downside of using quantiles is that they depend on all the data and are noisy when there 
are few observations (small peer groups or poor disclosure). Moreover, one cannot 
compute quantiles until all the data for a reporting year is available, which can 
substantially delay signal determination. Additionally, quantiles de-mean the signals – 
the median signal value will be 0.5 time after time, making trends somewhat obscured. 
Moreover, there is risk that clusters of outliers may corrupt quantile’s bucket boundaries. 

As a remedy to these practical problems, one can choose a parametric distribution that 
closely approximates the empirical distribution. Such parameters can often be estimated 
in a robust way, as to not be too sensitive to outliers. These parameters might also be 
fixed or slowly adjusted over time so that signal trends can be observed. A second benefit 
of a parametric approach is that it facilitates signal definition when there are very few 
observable points. One may “borrow” parameters from similar peer groups, or maybe 
even jointly estimate the parameters of several groups taking into account prior beliefs 
of each group’s mean value. 

We emphasize that the interpretation of parametrically fitted signals remains the same 
as if bucketed quantiles were used. The parametric approach is intended to be a more 
robust implementation that deals with material issues that arise in practice, and would 
give the same results as buckets if data were less sparse and noisy. 

One implication of either form of percentile estimation is that the high values may not 
correspond to a sustainability goal. For example, if an entire industry has high pollution 
levels, does it make sense for the best relative performer to receive a signal near 1? One 
remedy is to construct peer group signals as well as signals for companies within each 
peer group. 

The role and guidelines for aggregation layers 

After the rightmost layer in Figure 2, nodes start to combine. Although these too can be 
thought of as activation functions, we call this signal aggregation because they take 
multiple inputs. The parameters for these functions are labeled w for weights than can 
reflect the relative importance among input signals. 

While it is true that weights are an aspect of aggregation, there is no reason to limit 
ourselves to linear functions like weighted averages. If, for example, there is more than 
one way to meet a sustainability goal, taking the maximum value might be appropriate. 
In other cases, risks might be best reflected by taking the minimum and passing the worst 
signal forward to the next level. Thus there are other choices to consider besides weights. 

We will discuss these alternatives in greater detail after extracting univariate signals in 
our case study. 
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What about machine learning? 

While the machine-learning-like signal construction and aggregation flow diagram is 
meant to provide some comfort that we are taking a structured approach, we do not 
believe it is feasible to apply conventional machine learning techniques at this point in 
time. This is because the data is insufficient in terms of historical length and breadth – 
we do not have “plenty of data”. Moreover, historical ESG data may be especially non-
representative of future results: climate change in particular is subject to new regulations 
and changes in aggregate consumer behaviour.  Also relevant is the fact that there is no 
clear objective function for machine learning algorithms to optimize. In fact, financial 
performance and sustainability goals are measured separately, and there is no consensus 
on the trade-offs between them.  

 

Univariate Signals from E&S Data 

In this section we address key issues arising in the constructing signals based on 
Environmental and Social data. One important theme is the need to normalize based on 
some proxy of activity or firm size. In this case study we decided to use revenue since it 
is something that applies uniformly to all companies. Another key theme is the need to 
make relative comparisons – the constructed signals reflect normalized performance 
relative to a peer group. This results in signals being normalized by both firm size and 
industry. But perhaps the most important theme developed here is that of estimating 
the marginal impact as companies scale. As we shall see, for many fields, there is strong 
statistical evidence that larger companies have a lower marginal impact than smaller 
companies – something that is missed by using pure intensity ratios and can bias signals 
if not accounted for. 

Before getting in to the details, we emphasize that the techniques developed here have 
widespread applicability across various ES factors. In this study, GHG Scope 1, GHG 
Scope 2, Energy Consumption, Number and Amount of Spills and Fatalities are all fields 
that merit treatment as described below. Moreover, these techniques apply to ESG-
related fields not in our study, such as Nitrogen Oxide Emissions (NOX), Volatile Organic 
Compounds Emissions (VOC), Sulphur Dioxide Emissions (SO2), Particulate Matter 
(PM10, PM5, etc.), Number and Amount of Fines (environmental and anti-competitive), 
Number of Environmental Incidents, Number and Duration of Strikes and Lockouts, 
Number and Units of Recalls, Number of Data Breaches and various others.  

In the section below we treat emissions fields in detail. Fields such as Fatalities and Spills 
are count data and fields like Spill Amounts are heavily skewed due to a large number of 
zeros in the data. The treatment of count and zero-inflated data differs only because the 
dependent variable, Impact, is far from Gaussian in those cases. These present technical 
rather than conceptual challenges, and as such are detailed in the Appendix.  

Emissions: Inferring diminishing marginal impacts 

Consider the Environmental fields, GHG Scope 1 and Scope 2 Emissions1, and Energy 
Consumption. It would be misleading to rank companies based on these numbers alone 
simply because they produce at different levels, and the emissions of small companies 
are expected to be smaller than emissions of larger companies. As some measure of 
efficiency is required, it is typical that these numbers are normalized by some measure 

                     
1 Recall that Scope 2 GHG Emissions are indirect emissions, such as via energy use, and Scope 1 are the direct emissions 
resulting from business operations. 
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of activity, such as production levels or revenue. These are called intensity ratios, and 
measure environmental impact versus unit activity: 

Intensity =
Impact

Activity
 

Let’s rewrite this as  

Impact = Intensity × Activity𝛾 

Here we have introduced the exponent γ to capture possible nonlinearity between 
production activities and environmental impacts. This formulation is consistent with the 
Cobb-Douglas production function, and γ captures the elasticity between production 
activity and environmental impacts.  Note that  

 If  γ=1we have constant marginal impact, regardless of activity level 

 If  γ<1 the marginal impact is decreasing with activity 

 If  γ>1 the marginal impact is increasing with activity 

The idea of examining environmental impacts in terms of elasticities and Cobb-Douglas 
like impact functions is not a new one. See, for example, (Ellis and Fisher) (Fullerton and 
Ta) and (York, Rosa and Dietz). 
We can write this equation in logarithmic terms, and introduce an innovation term ε 

log Impact = Average log Intensity + 𝛾 × log Activity + 𝜀 

This allows us to estimate the elasticity γ using regression techniques. Note that the 
company-specific term is now the innovation, and the intensity term is the intercept. If 
we estimate regressions by industry, then the intercept represents an average intensity 
for the industry, which may be useful for ranking industries. Furthermore, and most 
importantly, instead of assuming γ=1, we can estimate it, which potentially eliminates 
bias due to misspecification. 

Plots of Scope 1 Emissions versus Revenue data are shown in Figure 3. On the left we see 
the data in nominal terms, whereas on the right we have used a logarithmic plot. Not 
only is it easier to see across the multiple orders of magnitude in the data, we can observe 
that the slopes of the various industries are indeed similar and near γ=1. 

 
Figure 3: GHG Scope 1 Emissions versus Revenue, by industry. The plot on the left is in nominal coordinates, and the 
plot on the right is the same data graphed on a logarithmic scale. 

In this case study we estimated the regression using a linear mixed-effects model, where 
the elasticity γ is a “fixed effect” across all industries, and the intercepts are “random 
effects” depending on industry. Results are shown in Table 4. 
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The results of regressing Scope 2 emissions on revenue are shown in Table 5. Here, the 
point estimate of elasticity is γ=0.81, which indicates a diminishing marginal impact. 
That is, for indirect GHG emissions, the data suggest larger companies might be in a 
position to take advantage of economies of scale more so than with their direct Scope 1 
emissions.  We also note that the industry ranks differ between Scope 1 and Scope 2.  

 

Industry Intercept Unit Intensity 

Oil, Gas & Coal 0.91 8.13 

Iron & Steel 0.81 6.45 

Metals & Mining 0.64 4.36 

Construction Materials 0.54 3.46 

Chemicals 0.47 2.95 

Containers & Packaging 0.09 1.23 

Transportation Equipment -0.40 .398 

Industrial Services -0.56 .275 

Aerospace & Defense -0.64 .229 

Electrical Equipment -0.75 .178 

Machinery -1.10 .079 

Table 4: Results of regressing log of Scope 1 emissions on log of Revenue using a linear-mixed effects model. The 
industry specific intercepts are shown above, and the estimated elasticity is 0.945 with a 95% confidence interval of 
[0.708, 1.18]. The industry unit intensities are 10^Intercept, with units of millions of metric tons. 

The last step for signal extraction is transforming the innovation to a 0 to 1 scale. Using 
the normal cumulative distribution function Φ, preserves percentiles and converts large 
innovations to either zero or one depending on sign. For emissions, negative innovations 
are “good”, so we use 

1 − Φ(𝜀𝑖; 0, 𝜎) 
where σ is the standard deviation of the innovations. Effectively this makes the signal 
equal to the percentile of size-normalized emissions except that we have captured 
elasticity effects.  
 

Industry Intercept Unit Intensity 

Iron & Steel 0.55 3.59 

Oil, Gas & Coal 0.40 2.50 

Containers & Packaging 0.33 2.13 

Chemicals 0.24 1.74 

Construction Materials 0.24 1.74 

Metals & Mining 0.07 1.18 

Transportation Equipment -0.13 0.75 

Aerospace & Defense -0.20 0.63 

Electrical Equipment -0.25 0.57 

Industrial Services -0.46 0.34 

Machinery -0.80 0.16 

Table 5: Results of regressing log of Scope 2 emissions on log of Revenue using a linear-mixed effects model. The 
industry specific intercepts are shown above, and the estimated elasticity is 0.806 with a 95% confidence interval of 
[0.565, 1.05]. The industry unit intensities are 10^Intercept, with units of thousands of metric tons. 
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Results of the signal extraction model are illustrated in Figure 4. We point out that the 
traditional intensity approach introduces a bias that can benefit large companies and can 
penalize small companies. This is because innovations assume unit elasticity, so large 
companies behaving in a linear way are not penalized. A few company-specific examples 
are shown in Table 6. Two of the largest companies, Phillips 66 and Marathon, have 
better-than-average intensities, but their actual Scope 2 emissions are greater than the 
expected value based on regression. Conoco Phillips, on the other hand, has revenue of 
a similar magnitude, and has Scope 2 emissions below the diminishing impact expected 
value. Naturally it fares well under both methods, but signal method developed here 
better recognizes their diminishing marginal impact. Conversely, Diamondback Energy 
has an order of magnitude smaller revenue, is in the bottom half based on intensity, but 
is in the top half based using the signal constructed here, reflecting a more careful 
comparison to its revenue peers 

 
Figure 4: Signal extraction results for Scope 1 and Scope 2 emissions. The color of the dot indicates the signal value, 
based on the innovation, with green being near 1 and red near 0. The dependent variable (vertical axis) is graphed 
with the industry-specific intercept acting as a normalization constant. The dotted lines represent the mean and 
plus/minus one standard deviations based on the regression estimates. 

Finally we point out that when γ≈1, the resulting signal is comparable to using intensities. 
In fact, when γ=1 and if two intensities are the same, the innovation will be the same2. 

Company Revenue Scope 2 Intensity Intensity Half Expected 
Scope 2 

Signal Signal 
Half 

Phillips 66 $89,300 8,800 0.10 Top 6,723 0.41 Bottom 

Marathon $74,733 7,600 0.10 Top 5,818 0.41 Bottom 

ONEOK $12,174 2,100 0.17 Bottom 1,333 0.35 Bottom 

ConocoPhillips $29,106 1,200 0.04 Top 2,705 0.75 Top 

Diamondback 
Energy 

$1,212 158 0.13 Bottom 205 0.59 Top 

Table 6: Selected differences between regression-based signals and intensities. Large companies rank better by 
intensity than they do based on expected values via regression. Conversely, small companies can fare worse with 
intensities. Both are evidence of bias in using intensities when data exhibit diminishing marginal impacts. 

  

                     
2 To see this, note that two companies have the same intensity if both the impact and activity are scaled by the same 
amount, say m. Then  

𝜀 = log 𝑚×Impact − log Intensity − log 𝑚×Activity = log Impact − log Intensity − log Activity 
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Health and Safety Rates 

ESG frameworks typically consider Human Capital in the Social Dimension, and health 
and safety rates are used as a quantifiable measure of outcomes for this. For the 
purposes of this case study we assume the investor’s mandate includes the view that 
human capital should be treated equally in all industries and regardless of whether the 
employee is full-time or a contractor. This implies that we estimate signal curves across 
the entire population. With this assumption, there is no industry specific peer group, and 
signal averages may be different for different industries.  

As discussed previously, if the investing mandate includes limited sector-driven tracking 
error, one could justify using an industry normalization, effectively implementing an ESG 
“tilt”. 

Incident Rates. In the US, safety incident rates are defined by and reported to the 
Occupational Safety and Health Administration agency (OSHA). For this study we 
consider two commonly used metrics to assess worker safety: 

 Lost Time Incident Rates (LTIR): any occupational injury or illness resulting in the 
employee being unable to work a full assigned shift. 

 Total Recordable Incident Rates (TRIR): any occupational injury or illness requiring 
medical treatment or first-aid. 

Since that Lost Time incidents are included in the Total, we have TRIR > LTIR.  

Since only the rates are available to us (and not numerator and denominators), we are 
essentially forced to assume unit elasticity versus aggregate hours worked in a company. 
Because the data are non-negative and may have a mode greater than zero, we use the 
gamma distribution. The survival function (one minus CDF) is used so that the signal is 1 
when incident rates are zero, and declines reflecting the data percentiles.  The data 
distributions and resulting signal curves are shown in Figure 5. 

 
Figure 5: Histograms of Total Reportable Incident Rates and Lost Time Incident Rates (left axis) and signal curves 
(right axis).  

Fatalities. These are normalized based on workforce size. The treatment is similar to 
emissions except that 

 The data has far more zeros than can be explained with a (transformed) normal 
distribution. Therefore we employ a modified regression method than can account 
for skewed dependent variables, which is discussed in the Appendix. 

 As with Incident Rates, we assume a mandate that does not differentiate by industry.  
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Community Rights & Relations Policies (CR&R) 

Our case study includes two indicator variables 

 Human Rights Policy. Indicates whether the company has implemented any 
initiatives to ensure the protection of the rights of all people it works with. “False” 
values indicate that the company has not explicitly disclosed any such efforts in its 
most recent Annual or Company Responsibility reports. 

 Indigenous Rights Policy. Indicates whether the company has disclosed a 
management approach for managing relations with indigenous populations in areas 
where they operate. The policy may include community relations, stakeholder 
engagement, local employment, local social and economic development, feedback 
and grievance mechanisms, land and resource use and resettlements before during 
and after mine operations. 

For these variables, we set the signal values to be 0 or 1 accordingly. Admittedly this is a 
blunt measure, as we do not consider the content or strength of these policies (which 
would require sentiment analysis, perhaps via NLP). 

 

Univariate Signals from Governance Data 

Governance data differs from ES data in a few key ways. First of all, it is not subject to 
company size normalizations, at least not in the same fundamental way. Secondly, 
corporate governance is closely aligned with traditional investment objectives, and as 
such there is a combination of guidelines, accepted best practices and even regulations 
that can guide designing signals that measure good governanc3. Finally, a key difference 
between governance fields and ES fields is that signal curves may not be strictly 
increasing or decreasing as a function of the data. 

With the exception of Gender Diversity, in this case study we demonstrate a technique 
for extracting signal shapes based on predicting financial and environmental 
performance from historical data. To be sure, this is subjective decision, as one goal of 
this paper is to demonstrate a variety of possible approaches without claiming 
optimality. What practitioners ultimately decide to do should certainly depend on their 
own mandates and objectives. 

Board Gender Diversity  

There is now widespread demand for improved gender diversity in corporate board 
rooms. Major asset managers and banks have put companies on notice that all-male 
boards are unacceptable and that they will be held accountable for improvement. 

Our task here is to quantify this sentiment by assigning the percentage of women 
directors a signal value. To this end we refer to the Bloomberg Gender Equality Index, 
which for 2019 exhibits an average 26% women directors. This is our double the 13.3% 
sample average of women directors in our data set. Our admittedly subjective approach 
is to assign a signal value of 0.5 to the average and 0.8 to the GEI value of 26%. Of course 
50% is assigned a signal value of 14. The results of this approach are shown in Figure 
6.Notably for 2017, 40 out of 260 companies have no women board members, leading to 
a substantial proportion of companies receiving a signal value of 0.2 or less. 

                     
3  For example, see the ISS US Proxy Voting Guidelines. 
4 We are not concerned with defining signal values beyond 50% (where at some point it might conceivably decrease) 
since our sample maximum is 50% and most boards today are far from 50%. 

https://www.issgovernance.com/file/policy/active/americas/US-Voting-Guidelines.pdf
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Figure 6: Signal curve and resulting distribution for percent women directors for 2017. The numbers in each bar are 
proportion of companies in each signal quintile. 

We emphasize that we have relied on principles here – other than the introduction of an 
interpolating curve, there is no model or estimation involved. Why not use data? While it 
would be possible to do so, we note that historically boards have been nearly all male. 
This can make it difficult to establish a pattern from the thin sub-sample of firms where 
women have significant representation in the boardroom, as there are many other 
factors to control for. Moreover, besides historically low representation, the benefits of 
improved diversity are likely to be occur over several years, and possibly entire economic 
cycles, which would require a different historical data set than this case study covers. 
Ultimately, however, our choice demonstrates how one might incorporate a kind of 
external guideline that is not unusual to sustainable investing mandates. 

Board Experience, Refreshment and Independence 

We now return to a more data-driven approach, first observing that we have to address 
the fact that governance data may not be monotonically “good” or “bad”. That is, we 
likely want to assign high signal values to intermediate values reflecting a “sweet spot”.  
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GHG SCOPE 1   0.11 -0.12 -0.07 -0.18 

GHG SCOPE 2   0.10 -0.12 -0.08 -0.19 

ENERGY CONSUMPTION  -0.06  -0.12 -0.11 -0.19 

NUMBER SPILLS    0.06   

AMOUNT OF SPILLS  -0.08     

LTIR  -0.07 0.08 -0.16 -0.13 -0.17 

TRIR  -0.06 0.10 -0.10 -0.08 -0.15 

HUMAN RIGHTS POLICY -0.08  -0.12  -0.06 0.23 

EXCESS RETURN    0.09 0.06 0.07 

VOLATILITY  -0.07  -0.20 -0.18 -0.10 

Table 7: Spearman rank correlations between E and S signals and Governance fields. Only correlations with p-value 
less than 0.05 are shown. Yellow cells indicate that younger or less tenured directors are positively associated to the 
signal, while blue cells indicate older or longer tenured directors are associated with higher signal values. There is no 
clear pattern for the percentage of independent directors. There were no significant correlations to Fatalities. 
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As initial motivation for such non-monotonic relationships, Table 7 contains the 
Spearman rank correlations between various governance metrics and quantities of 
interest, including the Environmental and Social signals already constructed and the one-
period ahead financial performance captured as Excess Return (defined as the company 
stock return minus the S&P 500 Ex-Financials and Real Estate index) and volatility. While 
the correlations are modest, the reported results are all statistically significant with p-
values of 0.05 or less. As the table shows, the results are mixed: some governance fields 
are positively correlated (blue) to key indicators while others are negative (yellow)5. 
Further evidence for non-monotonicity can be observed via boxplots as shown in Figure 
7. While the variation from one quintile to the next is not statistically significant, one can 
see that the lowest quintile volatilities occur somewhere in the middle of the distribution. 

 

 
Figure 7: Box plots of one-period ahead demeaned volatility by quintiles of governance field values.  Assuming lower 
volatility is the objective, one would design the signal to peak around the quintile with the lowest mean. 

Our strategy is to look for a signal function F(X, θ), where X is the original univariate 
governance data and θ are unknown parameters that control the signal shape. This signal 
function should be useful for predicting various outcomes, such as excess returns, 
volatility or Environmental and Social performance. This set-up amounts to the non-
linear multivariate regression 

𝑌 = 𝑐 + 𝛽𝐹(𝑋, 𝜃) + 𝜀 

Such regressions can be estimated numerically using non-linear optimization or MCMC 
routines. Key details and results of our estimations are provided in Table 8.  

                     
5 Except for volatility, which is reversed and colored blue because lower volatility is the objective. 
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In spite of the data-driven approach, some decisions here are subjective. We first 
examined box plots such as those in Figure 7 – raw metric quintiles versus target 
variables. Preference was given to cases exhibiting a single mode between governance 
signals and financial performance (improved excess returns, reduced volatility). When a 
similar mode appeared versus carbon emission signals, those signals were also included 
as dependent variables for estimation robustness. If the box plots did not exhibit 
evidence for a single mode, the target was eliminated from the MCMC optimization. This 
process led to different targets being used in the search for signal shape for different 
governance fields. 

Additionally, the MCMC estimation for Board Average Age is the most sensitive to the 
prior (initial value) and has a wide confidence interval, suggesting that its signal shape 
was not well-learned from the data. The remaining signals are statistically stronger, but 
the results do reflect choices of shape family and prior. Thus one might view this 
approach as a hybrid between subjective and objectively optimal parameter settings.  

 

G Metric Motivation Targets  Treatment 

Board Age 
Range 

Age range captures an aspect of diversity, which can 
encompass experience and multiple investment 
horizons. 

Returns, 
Volatility, 
Energy Use 

Gamma curve with mode at 
22.7 years, 95% CI of [21, 
31.4]. Prior/initial value = 19. 

Board 
Average Age 

A higher average age may be correlated with both 
experience and entrenchment. 

Volatility Normal curve with mode at 
59.97 years, 95% CI of [49.7, 
73.3]. Prior is 60. 

Chair Tenure Long chair tenures are associated with entrenchment 
and perceived to be detrimental for corporate 
governance. However, short tenures may be 
associated with inexperience.   

Volatility, 
Energy Use 

Gamma curve with mode at 
6.8 years, 95% CI of [-0.4, 
15.4] 

Board Tenure Existing research suggests that regular refreshment, 
resulting in balanced board tenures results in better 
returns with lower risk and that, conversely, boards 
with concentrations in either low or high tenure 
buckets have inferior performance on average.  

Returns, 
Volatility, 
Carbon 
Emissions, 
Energy Use 

Dirichlet surface with mode 
at 25% directors in 0-5Y 
tenure bucket, 20% in 5-10Y 
bucket and 55% in 10+ 
bucket. CIs are [.18, .31], 
[.06, .27], and [.48, .72]. 
Prior/initial value = 
[1/3,1/3,1/3]. 

Percentage of 
Independent 
Directors 

Governance best practices include a strong role for 
independent directors to ensure that management is 
held accountable to the broader company, including 
shareholders. 

Volatility, 
Carbon 
Emissions 

Beta curve with mode at 
81%, 95% CI of [0.76, 0.84]. 
Prior/initial value = 0.75 

Table 8: Summary of governance signal definitions.  

 

Results are shown in Figure 8. Note that Age Range and Board Average Age are far from 
percentile-like signals: 73% and 56%, respectively, of those signals are clustered into 
signals 0.8 or higher. One interpretation of this is that signal is effectively acting as 
indicators of poor performance, and something that the majority of companies “pass”. 

Figure 9 shows analogous results for the distribution of board tenures using a ternary 
plot. Each of the three axes represents the percentage of directors in each tenure bucket. 
Since the percentage must sum to 100%, the plot is shows the triangle formed by the 
graph of the plane x+y+z=1 in the positive octant of a 3D graph. High signals are in the 
lower left because the estimated result has 55% of directors in the 10+ buckets. 
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Figure 8: G signal curves and signal distributions. Horizontal bars depict the distribution of resulting 0-1 signals. The 
dark blue lines are the signal curve. 

A final note on the selection of non-monotonic signal shapes: an initial version of this 
case study involved only monotonic shapes based on the percentile of the observation – 
considered by many to be “safe ground” for ESG ranking. In that case the resulting 
aggregated G signal exhibited no significant relationship with either one-period ahead 
returns or volatility. As we shall see, the outcome is different with signals constructed as 
above. 

 
Figure 9: Signal levels for board tenure. Blue contour lines are the level curves for signals 0.25, 0.50 and 0.75, with the 
blue square set at the peak signal mode (25%, 20%,55%). The red square is the location of the uniform tenure 
distribution of 1/3 in each bucket and receives a signal of 0.625. Gray-blue dots represent the density of observations. 
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Signal Aggregation 

We now turn our attention to combining or aggregating signals. As with the previous 
sections, there are both objective and subjective aspects to our approach. Depending on 
one’s objectives or mandate, different decisions could certainly be justified. 

We begin with factor analysis, which can be used to determine if first-layer signals are 
statistically redundant in that they differ only by noise. In such case it makes sense to 
average those signals in the hope of noise cancellation.  

Outside of those cases, we must find an approach to rank companies based on (or in spite 
of) multivariate characteristics. This cannot be done without expressing some beliefs 
about the relative importance and tradeoffs among individual characteristics. 

Factor Analysis 

We begin by separately exploring the correlations within the ES and G signal groups. 
Table 9 shows the correlations among the ES signals, where we have ordered the fields 
so that the signals for Spills, Carbon, CR&R, Fatalities and Health & Safety are adjacent. 
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NUMBER 
SPILLS 

1             

AMT SPILLS 0.77 1            

GHG SCOPE 1 0.18 0.12 1           

GHG SCOPE 2   0.88 1          

ENERGY 
CONSUMPTION 

0.26 0.21 0.59 0.51 1         

IR POLICY 0.31 0.37    1        

HR POLICY  0.13 -0.28 -0.26 -0.35 0.34 1       

FATALs EMP 0.54 0.51 0.40 0.32 0.44 0.20  1      

FATALs 
CNTRCTR  

0.61 0.71   0.21 0.24  0.51 1     

TRIR 0.15  0.51 0.54 0.44  -0.31 0.33  1    

TRIR CNTRCTR 0.71 0.69 0.24 0.13 0.24 0.38  0.59 0.64 0.16 1   

LTIR 0.36 0.25 0.55 0.45 0.53  -0.25 0.44 0.21 0.53 0.31 1  

LTIR CNTRCTR 0.70 0.69 0.20  0.24 0.29  0.55 0.75  0.86 0.34 1 

Table 9: Spearman rank correlations between univariate ES signals. Only correlations with a p-value less than 0.05 
are shown. The highlighted block diagonals show the in-group correlations among Spills, Carbon, CR&R, Fatalities 
and Health & Safety. 

The relatively high correlations along the block diagonals are candidates for factor 
analysis. Indeed, one can calculate factor loadings for the fields in each block to seek 
further evidence that these groups are single-factor. Results are shown in Table 10. While 
the traditional threshold of 0.7 is not a rigorous guideline, the result is consistent with our 
starting ESG framework. 

 



20 
 

Signal Group Univariate Signals Factor Loadings 

Spills Number Spills, Amt Spills 1.58, 0.42 

Carbon Scope 1, Scope 2, Energy Consumption 2.15, 0.62, 0.23 

CR&R Human and Indigenous Rights Policies 1.45, 0.55 

Fatalities Fatalities Employees, Fatalities Contractors 1.0, 0.0 

Health & Safety TRIR+LTIR, Employees and Contractors 2.97, 0.62, 0.32, 0..08 

Table 10: Factor loadings for each signal group. Based on the Kaiser criterion of 0.7, each group has only one 
significant factor (in bold). 

As a result of this factor analysis, we construct group signals for Spills, Carbon, CR&R, 
Fatalities and Health & Safety by taking simple averages of the univariate signals. Note 
there is also a missing data benefit here: if a univariate signal is missing, we average 
what’s available without penalty. Statistically, missing data within such groups can be 
considered more as a missed opportunity to reduce noise than truly missing a signal. 

A similar analysis for G signals shows less evidence for dimension reduction. Statistically 
significant rank correlations are shown in Table 11, and the factor loadings are shown in 
Figure 10. Moreover, since there is very little missing data for each G signal, we will refrain 
from aggregating using a simple average and instead look for principle and evidence-
based methods for combining into an overall G signal. 

 
Pct Indep 

Dirs 
Chair Tenure Board Avg 

Age 
Age 

Range 
Board 
Tenure 

Pct Women 
on Board 

Pct Indep Dirs 1 
   

  

Chair Tenure 0.16 1 
    

Board Avg Age 
 

0.13 1 
   

Age Range 
 

  1 
  

Board Tenure 
   

0.24 1 
 

Pct Women on Board     0.13 1 

Table 11: Spearman rank correlations for governance signals. Only correlations with a p-value greater than 0.05 are 
shown. Visually the correlations can be arranged into the two blocks shown, but it is unclear what, if any, 
interpretation to give to them. 

 

 
Figure 10: Factor loadings for G signals. Based on the Kaiser criterion of 0.7, there are at least 5 factors among these 
6 signals. 
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Composite Indicators and Generalized Means 

Aggregating multivariate signals into a single “overall” signal is both discomforting and 
familiar. On one hand, doing so obscures information about empirically different 
features of the entities being ranked. On the other, in everyday life we have generally 
come to value how complex traits can be summarized via ranking algorithms, viz. college 
rankings, all-time greatest sports rankings, economic rankings, etc.  

Indeed the OECD has founded the Competence Centre on Composite Indicators, which 
sponsors research and collects best practices for aggregating metrics and signals into 
overall indicators that are suitable for policy decisions. One of the key design decisions 
they highlight concerns compensability, meaning the extent to which performance in one 
signal can offset poor performance in another. When two traits are reasonably 
substitutable, it makes sense to allow compensability in signal aggregation. In other 
cases, it might be reasonable to expect good performance in multiple signals. Note that 
the introduction of weights into a linear average does not fundamentally alter 
substitutability – weights merely define the rate of substitutability.  

One way to implement limited compensability is to use Generalized Means. Given a 
vector of n signals s, a weight vector w and an exponent p, the Generalized Mean is given 
by 

𝑀(𝑠, 𝑤, 𝑝) = (∑ 𝑤𝑗𝑠𝑗
𝑝

𝑛

𝑗=1

)

1/𝑝

 

This formula encapsulates some well-known special cases: 

p = -∞ Minimum 

p = -1 Harmonic mean 

p = 0 Geometric mean 

p = 1 Arithmetic (simple) mean 

p = ∞ Maximum 

Table 12: Special cases of the Generalized p-Mean. 

Qualitatively one can think of the choice of p in terms of the following: 

 When p<1, there is a penalty for uneven performance – the result is skewed 
toward the lowest value. One might set p<1 when it is reasonable to expect all 
input signals to be high – perhaps when there are clearly defined quantitative 
signals and no substantial trade-offs in trying to improve them. 

 When p>1, the aggregate signal provides a kind of benefit of doubt – the result is 
skewed towards the highest value (best input signal). Choices of p>1 can make 
sense in cases where there are multiple ways to achieve a goal. For example 
sufficient Board Independence might be met either through independent 
directors or independent leadership. 

The choice of parameter p may be best explained by example. Consider ranking three 
hypothetical companies based signals for Diversity, Refreshment and Independence as 
shown in Table 13.  

 Company A and B have the same average (simple mean) – 0.7 

 Company A has perfectly even performance while Company B is very uneven. 

https://composite-indicators.jrc.ec.europa.eu/?q=about-us


22 
 

 Meanwhile Company C has a lower average performance, but is a relatively even 
performer. 

This situation poses some important questions: 

 Are companies A and B “the same”? 

 Is company B really better than C? 

 Company A Company B Company C 

Diversity .7 .1 .4 

Refreshment .7 1.0 .6 

Independence .7 1.0 .8 

Harmonic Mean  (p=-1) .7 .25 .55 

Geometric Mean (p=0) .7 .46 .57 

¼ Mean (p=1/4) .7 .53 .58 

½ Mean (p=1/2) .7 .6 .59 

Simple Mean (p=1) .7 .7 .6 

Table 13: Hypothetical cases for aggregating Diversity, Refreshment and Independence signals. 

The views one has for those questions can provide guidance on selecting p, as any p<1 
will result in company B receiving a lower aggregate than A, and a choice of p<½ results 
in company C receiving a higher aggregate signal than B. In short, the choice of p is a 
parsimonious way to implement a view on even performance. Weights can be used if one 
has a view on relative importance independently from even performance.  

Aggregate G Signal 

Although relying on judgement could be one approach for parameter selection, we now 
demonstrate how one can use historical data to relate parameters to financial 
performance. This is possible with G data because of the relatively long history. As with 
the univariate G signals, we can pose the problem as a non-linear regression where the 
weights w and exponent p are unknown.  

𝑌𝑗 = 𝐶𝑖(𝑗) + 𝛽𝑀𝛿(𝑠𝑗, 𝑤, 𝑝) + 𝜀 

For the dependent variables Y, we use one period ahead volatility and excess returns. 
Note we included industry-specific intercepts. In addition, we incorporated a shift term 
δ to avoid possible singularities for zero signals6. The main results of the estimation are 
shown in Table 14.  

The estimation is initialized with a prior of equal weights and results in only modest 
differences from that: based on the data, Independence becomes slightly down-
weighted and Percent of Women on Board becomes slightly over-weighted. The prior 
for p was set to 0.5, and the result is close to that value as well – although we note that 
the confidence interval for p is strictly less than 1.0, giving evidence for limited 
compensability. 

 Visualizations of the regression results are shown in Figure 11. We also observe that 
while the slope for returns is not statistically significant, the estimated G signal does 
correlate with lower volatility. The estimated β is -11.1 and is statistically significant, 
indicating that as the G signal moves from 0 to 1, the excess volatility is expected to 

                     
6 To be precise, the signal is shifted and the mean is un-shifted: Mδ=M(s+ δ,w,p) – δ. In this study we fixed 

δ=0.5. 
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decrease by 11.1%. The rank correlation between the aggregate G signal and volatility is 
-0.20. 

Parameter Mean CI (95%) 

p 0.48 [0.1,0.87] 

βvol -10.3 [-16.9, -3.6] 

βreturn 2.5 [-8.8, 13.7] 

w:  Pct Indep Dirs 0.126 [0.07, 0.25] 

w:  Chair Tenure 0.161 [0.07, 0.26] 

w:  Board Avg Age 0.163 [0.04, 0.25] 

w:  Age Range 0.170 [0.05, 0.22] 

w:  Board Tenure 0.165 [0.07, 0.19] 

w:  Pct Women on Board 0.215 [0.11, 0.32] 

Table 14: Parameter estimates of for G signal aggregation via generalized mean. Note the β for returns is not 
statistically significant since zero is contained in the CI. 

 
Figure 11: Regression of aggregate G signal on volatility and return. The dependent variables are demeaned by 
industry and year. Keep in mind the slope for returns is not statistically significant. 

One can also examine the relationship between one-period ahead volatilities and the G 
signal non-parametrically by quintiles, as shown in Table 15. Although the signals were 
constructed using in-sample data, it is encouraging that higher G signals are consistent 
with lower volatility in each individual year. 

 

Year G Q1 G Q2 G Q3 G Q4 G Q5 

2013 2.9 3.4 -2.8 2.0 -3.8 

2014 8.3 1.0 -3.6 -4.1 -1.8 

2015 4.2 0.0 -0.9 -2.5 -0.6 

2016 -0.7 3.6 0.5 0.8 -4.0 

2017 3.8 -0.5 0.1 -0.6 -3.4 

Table 15: G Signal quintiles of one-period ahead volatilities demeaned by industry and year. 
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Aggregate ES Signal 

Combining the ES group signals into an aggregate signal is more difficult due to the lack 
of historical data, although in practice we are not terribly sensitive to whatever we chose 
because few industries have much of a footprint in more than 1-2 groups. Table 16 
displays the percent of tickers for which a univariate signal is available in the 2017 
reporting year. Carbon is the best represented, with data completeness highest in 
Containers & Packaging, and lowest in Oil, Gas & Coal, with data available for only 11 out 
of 99 companies.  

We therefore fix the weights by considering signal availability, its rank correlation to one-
period ahead volatility7 and signal type. For example, CR&R is down-weighted to 1/8 
since it is based only on indicator variables. Fatalities and Safety receive the same weight 
due to low availability. The remaining weight ratio of 1.5:1 between Carbon and Spills 
reflects the better availability of Carbon and Energy data used in its construction.  

We also have a minimum threshold: there must be at least one non-policy based signal 
available (i.e. one signal besides CR&R), otherwise the aggregate ES signal is set to null 
for that ticker and reporting year. Finally we chose p=1/2, based both on the view that 
compensability is not readily justifiable, as well as for consistency with the G signal. 

  Signal Availability 

Industry Tickers Carbon Spills Fatalities Safety CR&R 

Aerospace & Defense 18 33% - - - 6% 

Chemicals 33 58% - 3% 15% - 

Construction Materials 8 13% 13% - 13% - 

Containers & Packaging 12 67% - - - - 

Electrical Equipment 24 25% - - - 4% 

Industrial Services 8 13% - - - - 

Iron & Steel 10 20% - - - 70% 

Machinery 29 17% 3% - - - 

Metals & Mining 11 27% 9% 27% 9% 100% 

Oil, Gas & Coal 99 11% 21% 2% 11% 99% 

Transportation Equipment 10 20% - - - - 

Vol Rank Correlation  -0.16 -0.2 - - -0.15 

Assumed Weight  3/8 1/4 1/8 1/8 1/8 
Table 16: Signal availability per Industry for 2017. The bottom row indicates our resulting choice for weight based on 
reporting and correlation to excess volatility. 

As a result of these assumptions, an aggregate ES signal can only be calculated for 50-85 
tickers per year (out of 280). With the important caveat that this may not be 
representative, the rank correlation between the aggregate ES signal and one-period 
ahead volatility is -0.23 with a p-value of 10-5 – greater than any of the rank correlations 
between the input signals and volatility. Furthermore, the β for regressing one-period 
ahead volatility on this ES signal is -7.8, and is statistically significant. 

Aggregate ESG Signal 

Given that low ES signal availability will have a strong influence on the results, it is not 
clear there will be much benefit in calculating an aggregate ESG signal. Nonetheless for 
completeness we present the results using equal weights between the ES and G signals, 
and p=1/2. The estimated β is -13.5 and rank correlation is -0.26, both marginally better 

                     
7 The rank correlations between univariate ES signals and one-period ahead returns are all statistically 
insignificant, so we exclude that from consideration. 
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than the results of ES and G alone. This result is visualized in Figure 12. 

 
Figure 12: Overall ESG signal versus volatility, where the volatility is demeaned by industry and year. Here β=-13.0. 

 

Discussion of Case Study Results 

Cross Sections and Trends 

Let us turn to a few other results besides the negative (in-sample) correlation to volatility. 
First, examining the histograms of the aggregate signals in Figure 13, we see that both 
avoid too much concentration. Having a reasonably “spread out” distribution suggests 
that we have preserved some ability to differentiate performance. Secondly, and more 
interestingly, we see differences in the mean and skew of the two aggregate signals. The 
ES signal is centered at 0.5, and has a skew of 0.06. This should be expected given that 
most of the univariate ES signals are derived from regression innovations.  

 

Figure 13: Histograms of aggregate signals. 

On the other hand, the G signal has a mean of 0.61 and skew of -0.58. This may reflect a 
consequence of using financial performance variables in the signal design. Existing 
governance principles may compel the majority companies to have similar 
characteristics, including return characteristics, leading to outliers in both board 
composition metrics and financial performance. 

In terms of trends, the results are modest. G signals show a slight increase over the 2013-
2017 sample period, which is probably not statistically significant. ES exhibits a slight 
decrease, due to a decrease in the Spills signal from 2014 onwards. Such effects could 
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simply be due to better reporting. 

 

Figure 14: Year-over-year signal trends (cross-sectional means). 

Company Analysis 

In this section we examine a few company-level results to see the impact of our decisions, 
and to see if we can perhaps determine any common characteristics among them. There 
is a major caveat in trying to draw conclusions here: our case study has utilized only a 
subset of fields that many ESG practitioners consider to be relevant in order to highlight 
methodological issues. (Refer again to Figure 1 for some of the factors not included in 
our results.) In short, while we can examine the impact of our design decisions, we 
caution against making over-arching ESG conclusions based on this signal set. 
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Lennox 
International 

Industrials Electrical 
Equipment 

3.8 -7.1 0.89 0.97 1 0.98 0.6 0.99 0.85 

Regal Beloit Industrials Machinery 3.4 -9.0 0.88 0.71 0.97 0.99 0.98 0.98 0.68 

WESCO 
International 

Industrials Industrial 
Services 

7.7 -4.1 0.86 0.97 0.64 1 0.81 1 0.79 

Avery 
Dennison 

Materials Chemicals 
6.6 -4.7 0.85 0.99 1 0.99 0.65 1 0.64 

Chevron Energy Oil, Gas & 
Coal 

127.5 -15.8 0.85 0.18 0.99 0.98 0.99 0.94 0.92 

Schlumberger Energy Oil, Gas & 
Coal 

30.4 -20.3 0.84 0.6 0.97 0.7 0.99 0.98 0.79 

General 
Dynamics 

Industrials Aerospace & 
Defense 

31.0 7.6 0.83 0.61 1 0.94 1 0.61 0.82 

HB Fuller Materials Chemicals 2.3 9.4 0.82 0.8 1 0.81 0.7 0.91 0.73 

Cummins Industrials Transportation 
Equipment 

20.4 -3.6 0.82 0.34 0.84 0.99 0.99 0.92 0.79 

Helmerich & 
Payne 

Energy Oil, Gas & 
Coal 

1.8 6.9 0.82 0.88 0.96 0.99 0.98 0.92 0.4 

Table 17: Companies with highest levels of G signal for 2017. The 2018 volatility is demeaned by industry. 

Table 17 contains the G signal and supporting data for the 10 companies receiving the 
highest aggregate G signal levels. There are 7 industries and two orders of magnitude in 
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revenue represented in this list. While no company received an aggregate G signal 0.9 or 
higher, these companies tend to have high values for all but one input signal. Board 
Tenure has the lowest average performance among these 10, and 5 of the companies 
have input signals less than 0.75. The average for Percent Women on Board for this group 
is 0.74, although only one company, Chevron, has a signal value above 0.9. There are 3 
companies receiving a signal of 0.75 or less for Percent Independent Directors. 

In order to better understand which G signals drive aggregate performance, we show the 
average signal values for each quintile in Table 18. Age Range shows the least 
differentiation, which is consistent with the histogram of these signals, where 73% of 
companies have signal values 0.8 or higher. Board Average Age has the second least 
differentiation, which is also expected based on the signal histogram. On the other hand, 
Board Tenure and Percent Women on the board seem to be driving most of the variation, 
with Independence being somewhere in the middle. 

 Aggregate 
G 

Board 
Tenure 

Age Range Chair Tenure Pct Indep Board Avg 
Age 

Pct Women 

Q1 0.41 0.0 0.86 0.59 0.20 0.64 0.0 

Q2 0.58 0.01 0.93 0.58 0.60 0.82 0.43 

Q3 0.64 0.20 0.90 0.69 0.70 0.89 0.60 

Q4 0.70 0.49 0.95 0.82 0.65 0.89 0.66 

Q5 0.77 0.71 0.98 0.89 0.81 0.91 0.73 

Table 18: Average signal values for each quintile of the 2017 G signal. 

Recall that the motivation for using generalized means is consistent performance across 
ESG factors. In Table 19 we calculate the difference between using our choice of 
weighted generalized mean and a simple mean, where the difference can be interpreted 
as an “unevenness penalty”.  The largest 10 such penalties are shown. While some 
companies have more than one zero, they all have zero signals for Percent Women on 
Board. Also 8 out of 10 of these companies are in the Oil, Gas & Coal Industry. 
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Cognex Industrials Electrical 
Equipment 

0.34 0.89 0.98 0.01 0.35 0.33 0 0.43 0.09 

TransDigm Group Industrials Aerospace 
& Defense 

0.66 0.91 0.98 0.74 0.91 0.94 0 0.75 0.09 

Andeavor 
Logistics 

Energy Oil, Gas & 
Coal 

0.41 0 0.96 1 0 1 0 0.49 0.08 

Dril-Quip Energy OG&C 0.68 0.63 1 0.99 0.98 0.97 0 0.76 0.08 

Western 
Midstream 

Energy OG&C 
0.4 0 1 0.96 0 0.91 0 0.48 0.08 

Diamond 
Offshore Drilling 

Energy OG&C 
0.33 0.9 0.93 0.17 0.24 0.2 0 0.41 0.08 

Continental 
Resources/OK 

Energy OG&C 
0.47 0.91 0.4 0.66 0.99 0.32 0 0.55 0.08 

Phillips 66  Energy OG&C 0.41 0 0.98 0.93 0 0.99 0 0.48 0.07 

PDC Energy Energy OG&C 0.58 0 1 1 0.92 0.99 0 0.65 0.07 

Energy Transfer Energy OG&C 0.42 0.36 0.89 0.86 0 0.84 0 0.49 0.07 

Table 19: Companies whose G signal differs the most from a simple mean for 2017. The "penalty" column is the 
difference between the simple mean of the 6 input signals and the generalized mean used in the G signal. 
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Interpretation of ES signal results is limited due to missing data. The 3 companies with 
the highest ES signal levels in each of the BICS 1 sectors is shown in Table 20. Notably, 
none of these have fatality rate data, and most of them do not have Spills or Safety data, 
so most of the “ES signal” is driven by the GHG Emissions and Energy use data in the 
Carbon Signal. Moreover, since we did not introduce any treatment or penalty for 
missing data, it is possible these companies benefit from missing data. 
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Univar Solutions Materials Chemicals 8.3 11.9 0.99 0.99     

Valvoline Materials Chemicals 2.1 -16.4 0.98 0.98     

International 
Flavors & Fragra 

Materials Chemicals 
3.4 -17.3 0.89 0.89     

Raytheon Industrials Aerospace & 
Defense 

25.3 -2.1 0.80 0.80     

Apache Energy Oil, Gas & 
Coal 

5.9 -8.5 0.79    0.60 1.00 

Kinder 
Morgan/DE 

Energy Oil, Gas & 
Coal 

13.7 -22.8 0.78  0.67   1.00 

Schlumberger Energy Oil, Gas & 
Coal 

30.4 -20.3 0.76 0.86    0.50 

Itron Industrials Electrical 
Equipment 

2.0 -8.2 0.73 0.81    0.50 

Keysight 
Technologies 

Industrials Electrical 
Equipment 

3.2 0.43 0.71 0.71     

Table 20: The top 3 ES signals in each BICS1 sector for 2017. 

In order to better understand the whether or not a larger number of input signals are 
lowering signals, we show the average signal level among observations where there is 
sufficient data to construct 1, 2, 3 and 4 signals in Table 21. (Note no observation has the 
complete set of 5 signals.) On the whole, the answer seems to be no – though nominally 
the average ES signal decreases slightly as the number of signals increases, this is not 
statistically significant as the standard deviations for each bucket are in the range of 0.1-
0.25. 

Num 
Signals 

Num 
Obs 

Carbon 
Signal 

Spills 
Signal 

Fatality 
Signal 

Safety 
Signal 

CR&R 
Signal 

ES 
Signal 

0 625       

1 434 0.50 0.40 1.00 0.82 0.07 0.50 

2 105 0.41 0.57 0.79 0.65 0.25 0.44 

3 34 0.37 0.50 0.34 0.65 0.63 0.44 

4 26 0.39 0.37 0.61 0.81 0.80 0.48 

Table 21: Average signal values depending on available number of available ES signals per observation. 

  



29 
 

Size Bias in Signal Levels 

It is widely accepted that larger companies have better ESG characteristics. This is 
perhaps because larger companies garner more attention from institutional investors 
who are actively monitoring governance practices and perhaps pursuing sustainable 
investing goals. As such we look for correlation between our signals and firm revenue. 
We find that the rank correlation between the G signal and revenue is +0.14 and 
significant. This is visualized in Figure 15.  

However, regressing ES signals on revenue results in insignificant betas. Indeed we might 
expect size bias to be immaterial for ES because most of its univariate signals were 
constructed by normalizing on revenue. 

 
Figure 15: Relationship between revenue and G signal, showing positive correlation. 

Size Bias in ES Disclosure 

While we were able to eliminate size bias for ES via the signal construction, there is 
evidence that size bias remains for whether or not a company discloses. Table 22 shows 
that in all cases except Iron & Steel, the average revenue for companies disclosing 
enough to compute a signal is higher than companies that do not. 

 Mean Revenue 

Industry No ES Have ES 

Aerospace & Defense 14,845 27,579 

Chemicals 4,149 9,174 

Construction Materials 2,459 5,593 

Containers & Packaging 6,281 7,061 

Electrical Equipment 5,227 13,617 

Industrial Services 4,578 7,092 

Iron & Steel 7,769 5,099 

Machinery 5,359 13,499 

Metals & Mining 810 7,459 

Oil, Gas & Coal 8,069 32,228 

Transportation Equipment 5,418 16,242 
Table 22: Mean revenues broken out by revenue and whether or not an ES signal could be constructed. 
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Is the G Signal Distinct from Size Bias? 

Since larger firms tend to have less risk and better G signals as per our construction, it is 
reasonable to wonder if the two are statistically distinct. The evidence points to a 
qualified yes, based on comparing stand-alone and joint regressions as shown in Table 
23. In the joint regression estimate, the G signal coefficient is significant at 5.9%. Recall 
that we did not adjust for size in the estimation of G signal slopes. One might expect that 
if we had explicitly fit the univariate G signal shapes on size-normalized volatilities the 
significance result would be sharper.  

Regressors Slope Log 
Revenue 

Slope G Signal R2 

Log Revenue -8.6 

[-10.1, -7.1] 

- 0.097 

G Signal - -14.5 

[-21.1, -7.5] 

0.016 

Joint -8.3 

[-9.8,-6.7 ] 

-6.3 

[-12.8, 0.24] 

0.100 

Table 23: Regression tests for joint dependence of demeaned volatility on size and G signal. The p value for the 
slope of G Signal in the joint regression is 0.059. 

 

Out of Sample Results 

2018 data became available during the final preparation of this paper. This provided the 
opportunity for out-of-sample analysis. We used all the parameters (for both univariate 
and aggregate signals) as described above (and depending on data only through 2017), 
computed signals based on 2018 data, and compared the results to 2019 weekly volatility 
in Table 24. While there is not a monotonic decrease in volatility as G signals increase, it 
remains true that the top G quintile is less risky than the first, and that the average of the 
top two quintiles is lower than the average of the bottom two. Referring back to Table 
15, 2016 has a similar pattern to this 2018 out-of-sample performance. 

Note that since board characteristics do not change much year-over-year, neither do G 
signals – the standard deviation of the changes from 2017 to 2018 G signal differences is 
0.079, and the R2 of regression 2018 on 2017 is 0.985. Volatility is also somewhat serially 
correlated, as regressing the industry-demeaned 2019 volatilities on 2018 has an R2 of 
0.27. Given there is some stability of both quantities, we might have expected reasonable 
out-of-sample performance. 

Year G Q1 G Q2 G Q3 G Q4 G Q5 

2018 -1.9 0.9 7.5 -1.3 -5.6 

Table 24: 2019 volatilities (demeaned by industry) by 2018 G Signal quintiles. 
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Conclusions 

In this paper we developed systematic approaches to extract signals from raw ESG data. 
Such signals are of interest for meeting sustainable investing goals while minding 
financial performance. The approach is general enough to incorporate sustainability 
goals into both the signal definition and aggregation processes. It is also amendable to 
validating design choices based on available historical data. This structured approach is 
of interest to investors and asset managers, especially since they are often tasked with 
implementing different objectives. ESG integration is not a one-size-fits-all process. 

Signal design is guided by a framework that associates individual fields to ESG factors. 
These frameworks embody sustainable development goals and acknowledge 
differences in financial materiality among industries. Multiple frameworks are another 
manifestation of the lack of consensus on objectives, and suggests this layered signal 
approach can be used to implement different mandates. 

Indeed, our approach consists of constructing a univariate signal from single ESG fields, 
including accounting for economic scale in fields such as emissions, spills and fatalities. 
One conclusion from our analysis is that many fields exhibit a decreasing marginal impact 
– larger firms enjoy a smaller per unit impact than smaller firms – implying that intensity 
ratios can be biased. For G fields, evidence shows that financial performance is improved 
using non-monotonic signal curves. By leveraging the length of the G data, we determine 
“sweet spots” where the signal curve peak, at least based on historical performance. 

Once univariate signals are constructed, factor analysis is used to determine if different 
signals are measuring the same factor. Factor results are compared to the framework to 
ensure that signals combine usefully. When univariate signals behave as a single factor, 
we use simple averages as to cancel measurement error as well as to serve a proxy for 
missing input signals. Once such signals are combined, the remaining factors are truly 
multivariate. Here we employ generalized means to implement the notion that good 
performance in one factor should not fully compensate poor performance in another. As 
with G signal design, we estimate aggregation parameters using historical data, 
establishing statistical evidence for this “non-compensability”. However, we also 
showed that it one can set the generalized mean parameter to reflect one’s views via 
stylized examples. In either case, the approach provides incentives for even performance 
in a manner that weighted averages cannot. 

Analysis shows that aggregated ESG signals are negatively correlated with return 
volatility. This paper therefore provides further evidence – directly from data, not ratings 
– that better ESG performance can result in better portfolios. Importantly, the approach 
provides important transparency into what drives aggregate signals, and other methods 
of aggregation could correlate with return volatility differently while perhaps better 
fulfilling some other purpose. 

By highlighting the subjective design choices made here, we hope some light has been 
shed on reasons why there is divergence among ESG score providers today. As demand 
for ESG integration increases, and objectives become clearer, it is necessary to have 
transparency about the methodology, especially as to how bias is treated and how multi-
factor ESG signals are designed to match objectives.  

These are early days for ESG integration. For ES signals in particular, reporting is low and 
disclosure itself has a size bias. Nonetheless it is our hope that by offering a structured, 
data-driven signal methodology, more companies will be encouraged to disclose, 
making it easier for investors to construct portfolios that truly reflect their objectives. 
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Appendix 

In order to unify the next two sections with Emissions modeling, we first point out that 
in all cases the goal is to estimate the parameters C and γ in the relationship 

E[Impact] = 𝐶 × Activity𝛾 

where 𝐶 = exp[Average log Intensity] . In sum, the treatment depends on the 
distribution of the dependent variable, Impact. The three formulations (Lognormal, 
Negative Binomial and Tweedie) are all flavors of exponential dispersion models, which 
unify ordinary least squares regression with these families (and a few more). 

We also mention that the problem of modeling skewed count and amount data naturally 
occurs in the insurance industry, where the number of claims is the count variable, and 
the losses are the amount variable. Moreover, actuaries have a keen need to determine 
not only the expected claim counts and losses as a function of predictor variables, but to 
understand the distributions as well – see, for example, (Meyers) and (Yang). For certain 
types of environmental risks, it seems natural to adopt similar techniques for predicting 
the probabilities of different outcomes. 

Count and Loss Data 

Let’s first turn our attention to case of Hazardous Materials Spills, for which we have both 
count of spills and spill amounts8. First of all, note that for both counts and amounts, zero 
is the desired level and is not in the middle of the distribution. Moreover, even if zero is 
not the most common outcome (i.e. the mode), we might hope to find a cluster of small 
values. In such cases, it will not be possible to transform such data to approximate 
normality. This artefact of the data is shown in Figure 16 for spill counts where 12% of 
the observation have spill counts of 0 or 1 and the Kolmogorov-Smirnov test for 
normality rejects normality with a p-value of 0.004. 

 
Figure 16: Histogram of #Spills, following a Box-Cox transformation of log(1+x). Note the cluster of small values is 
unlikely to go away under any Box Cox transformation, meaning that one cannot use a transformation to 
approximate normality. 

Consider again the formulation  

Impact = Intensity × Activity𝛾 

Since the dependent variable is integer-valued, instead of assuming log Impact is a 

                     
8 In practice we might also have recovered amounts. In that case, one might subtract the recovered amounts from the 
spill amounts, making the spill count play the role of differentiating between zero spills and perfect clean-ups. We omit 
this nuance in our case study. 
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normal distribution with 𝜇 = Average log Intensity + 𝛾 × log Activity  and Var(𝜀) =
𝜎2, we assume Impact follow a negative binomial distribution with  

𝑟 =
𝜇2

𝜎2 − 𝜇

𝑝 =
𝜇

𝜎2

 

As before, μ depends on log Activity, γ and a constant capturing an average intensity.  
Moreover the signal is calculated according to the corresponding distribution function 

1 − NegBin(𝑦; 𝑟, 𝑝) 

However, unlike before, the parameters now need to be estimated with more 
sophisticated techniques such as maximum likelihood.  

Results of this estimation process are shown in Table 25 and Figure 17.Not only do the 
data clearly exhibit diminishing marginal impacts, but the 25% percentile remains very 
low, indicating that good performance requires small spill counts even for large 
companies. It is also remarkable that the very largest spill counts occur for some of the 
lower-revenue companies. 

 
Figure 17: Signal extraction for number of spills adjusted by sector-specific unit intensities. As before green dots 
indicate signal levels near 1 and red rots indicate signals near 0.The estimated elasticity of γ=0.171 indicates 
strongly diminishing marginal impacts. 

 

Industry Intercept Unit 
Intensity 

Energy 3.45 31.4 

Materials 2.41 11.2 

Industrials 0.26 1.3 

Table 25: Results of Negative Binomial Regression for #Spills versus Revenue, where the estimated elasticity is 
γ=0.166 and μ=exp(intercept+ γ log(Revenue)). 

Of course, the number of spills is only part of the story – the amount of the spills also 
matters. Spill amounts share similar statistical characteristics with counts, except that 
the dependent variable is now a real number and not an integer. One appropriate 
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treatment for such data is the Tweedie distribution, which for certain parameter choices 
can be thought of as the distribution generated by summing up a random number of non-
negative random variables. 

𝑌 = ∑ 𝐴𝑗

𝑁

𝑗=1

 

Here N is Poisson(λ) and each Aj is Gamma(α,θ). The standard Tweedie parameters are 

𝑝 =
𝛼 + 2

𝛼 + 1
𝜇 = 𝜆𝛼𝜃

𝜙 =
𝜆1−𝑝(𝛼𝜃)2−𝑝

2 − 𝑝

 

For this compound Poisson-Gamma distribution, one has 1<p<2 and Var[𝑌] = 𝜙𝜇𝑝. It 
remains the case that μ depends on log Activity, γ and a constant capturing an average 
intensity. 

Results of a Tweedie fit for our sample data is shown in Figure 18. We see that both spill 
counts and amounts exhibit diminishing marginal impacts, meaning that their spills do 
not increase linearly with revenue. Had we simply used intensities, the resulting signals 
for large companies would have been biased upwards. 

 
Figure 18: Signal extraction for spill amounts. Again we see evidence for diminishing marginal impacts as companies 
scale. Units are thousands of metric tons. Note: roughly 10% of the data has values greater than 12 (and are not 
shown). These were also excluded from estimation, as the MLE method used is not particularly robust to outliers. 

Fatalities 

In the case of fatality rates, we do have the numerator and denominator (fatalities and 
number of workers), reported separately for employees and contractors. In light of the 
discussion concerning spill incidents, we recognize that the data is likely to have a large 
proportion of zeros, and that the fatality rate may not have unit elasticity. To that end 
we apply a Zero-Inflated Poisson model, in which the event rate can depend on the 
number of workers. Additionally, this model has an additional probability mass at zero, 
controlled by θ. With the dependent variable Y being the number of fatalities, the model 
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is 

𝜇 = exp (𝑐 + 𝛾 log(#Workers))

𝑃(𝑌 = 𝑦) = {
𝜃 + (1 − 𝜃)Poisson(0|𝜇) 𝑦 = 0

(1 − 𝜃)Poisson(𝑦|𝜇) 𝑦 > 0

 

Similarly to Negative Binomial and Tweedie models, Zero-Inflated Poisson models can 
be estimated via maximum likelihood. As with the incident rates, we pool together 
observations from all industries in our sample to reflect the principle that human capital 
has the same value in all industries. 

Results of the fatality estimation are show in Figure 19. Indeed we see that the elasticity 
is far less than one: the expected number of fatalities does not increase at the same rate 
for large and small companies. 

 
Figure 19: Fatalities versus size of workforce. Both employees and contractor fatalities are shown. Fatality rates 
clearly do not scale with unit elasticity. 
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Important Disclosures and Disclaimer: 

 

Any systematic investment strategies described herein may involve a high degree of risk, including without 
limitation market risk and other risks inherent in investing in securities, commodities, currencies, 
derivatives and other financial instruments. The value of and income from investments linked to such 
strategies may decline in value and loss of the original amount invested can occur.  All levels, prices and 
spreads are historical and do not represent current market levels, prices or spreads, some or all of which 
may have changed since the publication of this document.  

 

Bloomberg does not represent that the index data, quantitative models, analytic tools and other 
information (“Content”) referenced in this publication (including information obtained from third party 
sources) is accurate, complete or error free, and it should not be relied upon as such, nor does Bloomberg 
guarantee the timeliness, reliability, performance, continued availability, or currency of any Content.  The 
Content is provided for informational purposes only and is made available "as is."  Because of the 
possibility of human and mechanical errors as well as other factors, Bloomberg accepts no responsibility 
or liability for any errors or omissions in the Content (including but not limited to the calculation or 
performance of any index and/or the output of any quantitative model or analytic tool).  Any data on past 
performance, modelling or back-testing contained in the Content is no indication as to future 
performance.  No representation is made as to the reasonableness of the assumptions made within or 
the accuracy or completeness of any modelling or back-testing.   

 

Bloomberg shall not be liable for any damages, including without limitation, any special, punitive, indirect, 
incidental or consequential damages, or any lost profits, arising from the use of or reliance on any Content, 
even if advised of the possibility of such damages. 

 

Indices are unmanaged and cannot be invested in directly.  The development or creation of any product 
that uses, is based on, or is developed in connection with any index (each a “Product”) is prohibited 
without the prior written consent of Bloomberg.  Bloomberg does not sponsor, endorse, sell or promote 
such Products and makes no representation regarding the advisability of investing in any such Product.  
Index returns represent past performance and are not indicative of any specific investment. The Content 
(including any of the output derived from any analytic tools or models) is not intended to predict actual 
results, which may differ substantially from those reflected. 

 

Information and publications provided by Bloomberg shall not constitute, nor be construed as, investment 
advice or investment recommendations (i.e., recommendations as to whether or not to “buy”, “sell”, 
“hold”, or to enter or not to enter into any other transaction involving any specific interest) or a 
recommendation as to an investment or other strategy.  No aspect of the Bloomberg publications is based 
on the consideration of a customer's individual circumstances.  Information provided in the publications 
should not be considered as information sufficient upon which to base an investment decision. You should 
determine on your own whether you agree with the conclusions made in the publications. 
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