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Abstract

We present a consistent framework for computing shareholder and firm values of derivative portfo-
lios in the presence of collateral, counterparty risk and funding costs in a single currency economy
with stochastic interest rates and spot assets with local volatility. The follow-up paper Kjaer [12]
extends this setup to a multi-currency economy and the resulting valuation adjustments have been
implemented in the forthcoming Bloomberg MARS XVA product.
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1 Executive summary

We provide consistent calculations for shareholder and firm value adjustments (“The XVA metrics”)
for a derivative portfolio between a bank and a counterparty in the presence of counterparty
risk, funding costs and collateral support annexes (“CSA”) in a single-currency economy. All
calculations are from the perspective of “the bank”.

Shareholder, firm and reference values

The shareholder value of a derivative portfolio depends on the bank funding strategy and spreads.
It does not include the value of payments after own default. The firm value is the combined value
of the bank to the shareholders and bondholders. It includes the value of payments after own
default but excludes payments between shareholders and bondholders and is thus independent of
the funding strategy.

Valuation adjustments are calculated with respect to a risk-free reference value which uses OIS
discounting and is abbreviated VOIS. We also encounter the CSA discounted value VCSA where the
collateral rate is given as a fixed spread over OIS.

The XVA metrics

The shareholder value V̂ can be decomposed as:

V̂ = VOIS + COLV A+ FCV A+ FV A+MVA

with shareholder value metrics

• COLV A: The collateral valuation adjustment given as VCSA − VOIS.

• FCV A: The funding curve discounted credit valuation adjustment which is the cost of hedging
counterparty default risk.

• FV A: The funding valuation adjustment which is the cost or gain of funding or investing
the net variation margin collateral due to the unsecured funding rate being different from the
CSA collateral rate.

• MVA: The margin valuation adjustment which is the cost of raising unsecured funding for
the initial margin whilst only earning the CSA rate.

The firm value V̂FV can be decomposed as:

V̂FV = VOIS + COLV A+ FTDCV A+ FTDDV A+ FV VMV A+ FV IMV A

with firm value metrics

• FTDCV A: The first-to-default CVA is the cost of counterparty default in scenarios when the
bank has not defaulted.
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• FTDDV A: The first-to-default DVA is the gain to the bank bond holders of not having to
pay all liabilities at own default in scenarios when the counterparty has not defaulted.

• FV VMV A: The firm value variation margin value adjustment is the cost or gain due to the
variation margin collateral rate being different from the OIS reference rate.

• FV IMV A: The firm value initial margin value adjustment is the cost or gain due to the
initial margin collateral rate being different from the OIS reference rate.

Credit, funding and CSA curves

All XVA metrics need the following market data:

• Counterparty credit curve.

• OIS discounting curve.

• Variation and initial margin collateral spreads.

Shareholder value metrics only:

• Bank unsecured (i.e. risky) discount curve (the same rate is used for funding and investing).

Firm value metrics only:

• Bank credit curve.

Other assumptions

1. Frictionless continuous time and amount trading.

2. All trade cash flows, collateral and hedge assets are denominated in a single (domestic) cur-
rency.

3. All hedge assets are traded on a collateralised (or repo) basis.

4. The market risk factors are independent of JB and JC (e.g. no jump in S or r at counterparty
default).

5. Deterministic funding, Libor, collateral and credit spreads.

6. Single bond funding strategy used.

7. Full re-hypothecation of variation margin collateral.

8. Initial margin collateral is held by a third party custodian who pays the interest on it.

9. No basis spreads between bank debt of different seniorities.

10. Deterministic recovery rates for bank and counterparty debt and derivatives (these recovery
rates can be different).
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2 Introduction

Many models for computing valuation adjustments have been developed since the start financial
crisis, for example Piterbarg [13], Burgard and Kjaer [6], [7],[8], [9], Pallavicini et. al. [4] and
Albanese and Andersen [1]. Many of the more important results from these papers are discussed
in Green [10]. Credit, funding and other valuation adjustments (henceforth abbreviated XVA) are
now routinely included in dealer pricing quotes and found in the financial statements of many large
institutions. The aim of this paper is to present a model for consistent valuation adjustments in a
single currency economy. We use the same semi-replication approach as in Burgard and Kjaer [8]
since we feel it is very intuitive and offers the necessary detailed control over the precise funding of
different types of cash flows, including the hedging of the valuation adjustments themselves. We
extend Burgard and Kjaer [8] in four ways. First the asset dynamics is rich enough to include
the models most commonly used in practice for XVA calculations, such as the Hull-White one-
factor model for interest rates and local volatility for spot assets. Second the collateral modelling
is more careful and we distinguish between re-hypothecable variation margin and initial margin
held by a third party. It is this separation that causes the margin value adjustment, or MVA.
Three we distinguish between OIS and CSA discounting which gives rise to the collateral valuation
adjustment, or COLV A. Four, and finally, we derive valuation adjustments not only for the
shareholder value but also for the firm value. This is consistent with the approach taken in Albanese
and Andersen [1], Andersen and Duffie [2] and Burgard and Kjaer [9]. In a subsequent paper we
plan to extend this setup further to multi-currency portfolios, trades, collateral and counterparties.

This paper is organised as follows: The assets and accounts of the single currency economy are
introduced in Section 3 before we use semi-replication do derive the general valuation PDEs for the
shareholder and firm values in Section 4. To keep the notation reasonably simple we will initially
restrict ourselves to portfolios with a single netting set and credit support annex. In Section 5 we
choose a specific funding strategy with a single bond and derive the resulting shareholder and firm
valuation adjustment metric formulas. These formulas are then interpreted in Section 6 followed
by a discussion about the model assumptions in Section 7. We conclude in Section 8 and provide
technical details and an extension to multiple netting sets and credit support annexes in Appendix
A to D.

3 Hedging assets, accounts and rates

In this paper we consider a portfolio of derivative trades between a bank B and a counterparty
C in a single currency economy. To reduce the complexity of the notation we assume that all
trades belong to a single netting set and CSA. The extension to multiple netting sets and CSAs is
straightforward and discussed in Appendix C. The assets, accounts and rates are listed in Table 1.
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ZTr Default risk-free zero-coupon (maturing at T ) bond price.

βZ , r Repo-account and rate secured against ZTr .

rL Continuously compounded instantaneous Libor rate

S Spot asset price.

βS , γS Repo-account and rate secured against S.

PC , rC Counterparty overnight bond price and rate.

βC , γC Repo-account and rate secured against PC .

PF,j , rF,j Bank un-secured overnight bond price and rate for seniority j.

βφ, rφ Variation margin collateral account and rate.

βψ, rψ Initial margin collateral account and rate.

Table 1: Assets, accounts and rates of the single currency economy. The bank bond index j is
ordered by increasing seniority. The account values βZ , βS , βC , βφ, βψ are per unit of account.

All the assets in Table 1 are traded on a repo (or collateralised) basis and the associated account
values are per unit of account. In particular we follow Piterbarg [14] and let the “risk-free” rate r
of our economy be defined as the repo (or collateral) rate on the default risk-free bond Z. We use
the notation r rather than γZ partly for sentimental reasons and partly because the former looks
more aesthetic in a stochastic differential equation. As in Burgard and Kjaer [8],[9] the bank has
multiple overnight bonds PF,j of different seniorities (and recovery rates) RF,j for funding purposes.

Throughout this paper we use the rate ξ discount factor Dξ(t, T ) = exp
(
−
∫ T
t ξ(u)du

)
.

We next assume that the dynamics of the assets, accounts and rates in Table 1 under the real
world probability measure are given by

dS(t) = µS(t, S(t))S(t)dt+ σS(t, S(t))S(t)dWS(t)

dr(t) = µr(t, r(t))dt+ σr(t, r(t))dWr(t)

dPC(t) = rC(t)PC(t−)dt− (1−RC)PC(t−)dJC(t)

dPF,j(t) = rF,j(t)PF,j(t
−)dt− (1−RF,j)PF,j(t−)dJB(t)

dβS(t) = (γS(t)− qS(t))βS(t)dt

dβZ(t) = r(t)βZ(t)dt

dβC(t) = γC(t)βC(t)dt

dβφ(t) = rφ(t)βφ(t)dt

dβψ(t) = rψ(t)βψ(t)dt.

(1)

Here Wr and WS are Wiener-processes with correlation ρ and JB and JC are independent Poisson
processes. The recovery rates 0 ≤ RC ≤ 1, 0 ≤ RF,0 < RF,1 < . . . ≤ 1 are constant and the
functions µS(t, s), σS(t, s), µr(t, r), σr(t, r) satisfy certain technical conditions to guarantee strong
solutions of the stochastic differential equations for S and r. We furthermore assume a deterministic
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spot asset dividend yield qS and that all other rates are deterministic spreads over r such that

rL(t) = r(t) + sL(t)

rC(t) = r(t) + sC(t)

rF,j(t) = r(t) + sF,j(t)

γC(t) = r(t) + sβ,C(t)

γS(t) = r(t) + sβ,S(t)

rφ(t) = r(t) + sφ(t)

rψ(t) = r(t) + sψ(t)

(2)

In the case of zero basis between bank bonds of different seniority it is straightforward to show
that

sF,j = (1−RF,j)λB (3)

where λB is the deterministic spread of a (potentially hypothetical) bank zero recovery bond.
The construction of a funding curve rF,j is discussed in Appendix D. Analogously the spread of a
counterparty zero recovery bond is given by λC := rC−γC

1−RC which is deterministic.

Following standard short rate bond-price modelling for one-factor models (see e.g. Brigo and
Mercurio [5]) we assume that ZTr (t) = ZTr (t, r(t)) so Itô’s Lemma yields that

dZTr (t) =

(
∂ZTr
∂t

(t, r(t)) +
1

2
σ2r (t, r(t))

∂2ZTr
∂r2

(t, r(t))

)
dt+

∂ZTr
∂r

(t, r(t))dr(t) (4)

which shows that this bond can be used to hedge interest rate risk. Next we introduce the market
price of interest rate risk νr(t, r) given by

νr(t, r) :=

∂ZTr
∂t + 1

2σ
2
r (t, r)

∂2ZTr
∂r2

+ µr(t, r)
∂ZTr
∂r − rZ

T
r

σr(t, r)
∂ZTr
∂r

and let ar(t, r) := µr(t, r)− νr(t, r)σr(t, r). The bond dynamics (4) can now be rewritten as

dZTr (t) = r(t)ZTr (t)dt+
∂ZTr
∂r

(t, r(t)) (dr(t)− ar(t, r(t))dt) . (5)

In practise we would typically specify some a-priori forms of ar(t, r) and σr(t, r) to yield the Vasicek,
Hull-White, CIR or other one-factor short rate model, and then calibrate it to e.g. market discount
factors, caps and swaptions.

As the instantaneous Libor spread sL is deterministic we can compute forward Libor rates with

tenor τ as L(t, T, T + τ) =
(
DsL(T, T + τ) ZTr (t)

ZT+τ
r (t)

− 1
)
× 1

τ . Consequently L(t, T, T + τ) is a

function of r(t).

For the remainder of this paper we suppress the explicit dependence on t to improve the clarity of
the exposition and write P−

F,j := PF,j(t
−).
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4 Valuation by semi-replication

We consider a derivative portfolio whose trades pay the total amount H(r(T ), S(T )) on the same
date T provided that the bank and the counterparty are both alive. The payoff is expressed in
terms of r(T ) as the Libor rate L(T, T

′
, T

′
+τ) can be computed from r(T ). To allow more complex

portfolio events like multiple European style trade cashflows on different dates and spot asset or
Libor fixings prior to T would be straightforward extensions but would make the notation more
complex.

As in Burgard and Kjaer [8], [9] we let V̂ = V̂ (t, r, S, JB, JC) denote the total value to the bank of
the portfolio including funding, collateral and counterparty risk. Here V̂ ≥ 0 represents an asset to
the bank. Like in Kjaer [11] we consider generic boundary conditions at default of the bank or the
counterparty at time t given by V̂ (t, r, S, 1, 0) := gB(t) and V̂ (t, r, S, 0, 1) := gC(t), respectively.
These boundary conditions represent the present value of the portfolio immediately after default
and can represent contractual features such as standard ISDA closeouts, set-offs, extinguishers,
netting (or absence thereof) and collateral. As discussed in Andersen, Pykhtin and Sokol [3] the
modelling of closeout is complicated further by the margin period of risk during which some, but
not all cash flows are made. Given the complexity of the topic we use general gB and gC in this
paper.

4.1 Semi-replication

Still following Burgard and Kjaer [8], [9] we consider the bank balance sheet consisting of a deriva-
tive book with value V̂ and a hedging and funding portfolio Π given by

Π = δSS + δZZ
T
r + δCPC +

∑
j

δF,jPF,j + αSβS + αCβC + αZβZ + αφβφ + αψ,Bβψ. (6)

Here a positive weight means the bank is long the asset or account. In particular αφ ≥ 0 means
the bank has posted variation margin collateral with the counterparty and the total collateral
balance φ satisfies φ = αφβφ. Analogously we let ψB = αψ,Bβψ with αψ,B ≥ 0 and ψC = αψ,Cβψ
with αψ,C ≤ 0 denote the amounts of initial margin posted by the bank and the counterparty,
respectively. The initial margin amount ψC does not feature in Equation (6) since it is assumed to
be held by a third party custodian, who is also responsible for paying the interest on this balance.
Thus the bank funded collateral φ+ψB is given by the sum of the variation margin plus the initial
margin posted by the bank. The rules for computing variation and initial margin can be quite
complex and are not discussed in this paper.

The hedge assets and their repo accounts satisfy the the relations

δSS + αSβS = 0

δCPC + αCβC = 0

δZZr + αZβZ = 0.

(7)

In order to be replicating we require also require that V̂ + Π = 0 holds except possibly at bank
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default, which in turn implies that the funding weights δF,j must be chosen by the bank such that
they satisfy the funding constraint

V̂ +
∑
j

δF,jPF,j + φ+ ψB = 0. (8)

Using Itô’s lemma, the boundary conditions gB and gC , the no-basis condition (3) and choosing
the hedge ratios δS , δZ and δC such that the market and counterparty default risks are hedged out
gives the balance sheet dynamics

d(V̂ + Π) =
{∂V̂
∂t

+AV̂ + λB(gB − V̂ ) + λC(gC − V̂ )− r(V̂ + φ+ ψB) + rφφ+ rψψB

}
dt

+ εh(dJB − λBdt).
(9)

with parabolic operator A given by

A =
1

2
σ2S(t, S)S2 ∂

2

∂S2
+

1

2
σ2r (t, r)

∂2

∂r2
+ ρσr(t, r)σS(t, S)S

∂2

∂S∂r

+ (γS − qS)S
∂

∂S
+ ar(t, r)

∂

∂r
.

and hedge error at own default εh = gB − V̂ −
∑

j(1 − RF,j)δF,jP
−
F,j . The full proof is given in

Appendix A.

4.2 Shareholder value

It can be seen from Equation (9) that the balance sheet is risk-free as long as the bank is alive. At
bank default the jump term εhdJB gives rise to a wind or shortfall to the bondholders. When alive,
the shareholders of the bank will transfer a cost/gain of λBεh per unit of time to the bond-holders.
From the shareholder’s perspective we want to know the initial cost of setting up a self-financing
portfolio that replicates the final payoff H in all scenarios but possibly bank default. This cost is
obtained by setting all the dt−terms in (9) to zero, leading to the PDE

∂V̂

∂t
+AV̂ − (r + λB + λC)V̂ = −λBgB − λCgC − (rφ − r)φ− (rψ − r)ψB + λBεh

V̂ (T, r, S, 0, 0) = H(r, S)

(10)

subject to the funding constraint (8). We define the shareholder value of the derivative portfolio
to the the solution V̂ to (10). It is clear that V̂ depends on the funding strategy δF,j but critically
not on gB. This is expected as the shareholder value should in general not depend on a payment
that happens post default. The only exception is if the funding strategy depends explicitly on gB,
as is the case in the perfect replication strategy of Burgard and Kjaer [8] where the funding weights
are chosen such that εh = 0.
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Albanese et. al. [1] use accounting principles rather than semi-replication to define a shareholder
value of a derivatives book in the presence of counterparty risk, funding and collateral. Burgard and
Kjaer [9] prove that there exists a particular funding strategy such that the resulting V̂ coincides
with the definition in Albanese et. al. [1]. Our definition is more general as it is meaningful for all
funding strategies satisfying the funding constraint (8).

Albanese et. al. [1], Andersen and Duffie [2] and Burgard and Kjaer [9] all argue that the share-
holder value should be used for decision making and transfer pricing. Any new derivative must be
charged at least the incremental shareholder value ∆V̂ to ensure the shareholders are not worse
off.

4.3 Firm value

Albanese et. al. [1], Andersen and Duffie [2] and Burgard and Kjaer [9] all define the firm value V̂FV
as the combined value of the derivative book to the shareholders and bondholders. It represents
the cost of taking over the entire part of the balance sheet, including debt, that is associated with
the derivative portfolio. From this definition we have to exclude the martingale εh(dJB − λBdt)
part from the balance sheet dynamics (9) as it represents payments between the shareholders and
bondholders. In other words, V̂FV satisfies (10) with εh = 0. From this we see that the condition
ψB = −ψC is necessary for the firm value to be symmetric between the bank and the counterparty.
As expected the firm value is independent of the funding strategy followed by the bank.

4.4 Risk neutral dynamics

By the Feynman-Kac theorem the solution to (10) can be expressed in terms of a conditional
expectation Et [·] := E[·|S(t) = s, r(t) = r] with respect to a probability measure Q under which
JB(t) and JC(t) are independent Poisson processes with intensities λB(t) and λC(t) and

dS(t) = (γS(t)− qS(t))S(t)dt+ σS(t, S(t))S(t)dWQ
S (t)

dr(t) = ar(t, r(t))dt+ σr(t, r(t))dW
Q
r (t)

(11)

with WQ
S (t) and WQ

r (t) being Q-Wiener processes with correlation ρ. By standard short rate
theory, the zero coupon bond prices in this model are given by ZTr (t) = Et [Dr(t, T )] which can be
computed (semi)-analytically for the short rate models mentioned above.

4.5 Reference values

Before proceeding with the valuation adjustments in Section 5 we need to formalise the reference
value we calculate the adjustments on top of such that the total equals V̂ or V̂FV. First we let
ξ be an arbitrary rate such that sξ(t) := ξ(t) − r(t) is deterministic. We then define the rate
ξ-discounted value Vξ to be the Feynman-Kac solution Vξ(t, r, S) = Et [Dξ(t, T )H(r(T ), S(T ))] to
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the partial differential equation

∂Vξ
∂t

+AVξ = ξVξ

Vξ(T, r, S) = H(r, S).
(12)

In particular we will consider the two cases ξ(t) = r(t) and ξ(t) = rφ(t) where we denote the
respective solutions by Vr and Vφ and refer to them as the OIS and CSA discounted values,
respectively. The general shareholder value PDE (10) can be reduced to (12) with ξ(t) = rφ(t)

provided that ψB = 0, φ = −V̂ , and gC = V̂ . These conditions combined with the funding
constraint (8) imply that

∑
j δF,jPF,j = 0 so V̂ = Vφ which is expected as there is no counterparty

risk or unsecured funding requirements. In Section 6 we will give an example of a boundary
condition gC such that gC = V̂ is true. If furthermore gB = V̂ then the firm value satisfies
V̂FV = Vφ as well.

5 Funding strategies and valuation adjustments

As seen in the previous section, and discussed at length in Burgard and Kjaer [8],[9], the shareholder
value depends on the funding strategy deployed and so far in this paper the theory has been
developed for an arbitrary funding strategy. Hereafter we focus our attention on the single bond
funding strategy from Burgard and Kjaer [8] which in essence takes the model in Piterbarg [13] and
adds counterparty risk, including own default risk, and initial margin. To simplify the notation the
seniority index j is dropped from the notation from now on. This strategy features a symmetric
borrowing and lending rate rF since all borrowing is done by issuing PF and all excess cash is
invested by repurchasing PF . Here the word “re-purchase” should be interpreted as reducing the
short term borrowing requirements by not rolling over debt. This implicitly assumes the bank as
a whole is a net borrower and that excess cash from the derivatives operations can be recycled
elsewhere by the Treasury (e.g. by filling capital buffers). In Burgard and Kjaer [9] it is shown
that the valuation adjustments under this strategy are additive across credit support annexes and
netting sets, which in retrospect justifies why we only consider one counterparty in our economy.
Under this strategy the funding constraint (8) yields

δFPF = −V̂ − φ− ψB. (13)

The shareholder value defined in Albanese and Andersen [1] corresponds to a different asymmetric
funding strategy as discussed in Burgard and Kjaer [9]. Here a net borrowing requirement is funded
at the rate rF by issuing PF−bonds, whereas a net cash surplus must be invested by purchasing
Zr−bonds earning the rate r (via a reversed repo-agreement). The net cash requirement or surplus
is computed by the Treasury at bank level and covers all counterparties in the bank. This implies
that the shareholder value is no longer additive per netting set but must be computed at bank level,
which could be a formidable task from a computational and memory point of view. In practise the
two strategies are identical unless the derivative operations as well as the bank as a whole have
both generated cash surpluses at the same point in time. Only then would the bank Treasury not
be able to re-cycle the derivatives cash surplus within the bank itself.
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Having fixed the funding strategy we decompose the shareholder and firm values as

V̂ = Vφ + U

= Vr + (Vφ − Vr) + U

:= Vr + COLV A+ U

V̂FV = Vr + COLV A+ UFV.

(14)

The Collateral Valuation Adjustment, or COLV A, is the difference between the OIS and CSA
discounted values. From the PDE (12) satisfied by Vφ and Vr it can be shown that

COLV A = −Et
[∫ T

t
(rφ(u)− r(u))Dr(t, u)Vφ(u)du

]
(15)

where the expectation is taken with respect to the measure Q introduced in Section 4.4. We
interpret this integral as a basis swap in Section 6. For counterparties without CSA we set Vφ := Vr
so COLV A = 0 in this case.

5.1 Shareholder value adjustment metrics

In Appendix B we prove that U = FCV A+FV A+MVA with the funding curve discounted credit,
funding and margin value adjustments given by

FCV A = −Et
[∫ T

t
λC(u)DrF+λC (t, u)(Vφ(u)− gC(u))du

]
(16)

FV A = −Et
[∫ T

t
(rF (u)− rφ(u))DrF+λC (t, u)(Vφ(u) + φ(u))du

]
(17)

MVA = −Et
[∫ T

t
(rF (u)− rψ(u))DrF+λC (t, u)ψB(u)du

]
. (18)

In section 6 we provide interpretations for these valuation adjustments.

5.2 Firm value adjustment metrics

In Appendix B we prove that UFV = FTDCV A + FTDDV A + FV VMV A + FV IMV A with
the first-to-default credit, first-to-default debit, firm value variation margin and firm value initial
margin value adjustments given by
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FTDCV A( = −Et
[∫ T

t
λC(u)Dr+λB+λC (t, u)(Vφ(u)− gC(u))du

]
(19)

FTDDV A = −Et
[∫ T

t
λB(u)Dr+λB+λC (t, u)(Vφ(u)− gB(u))du

]
(20)

FV VMV A = −Et
[∫ T

t
(r(u)− rφ(u))Dr+λB+λC (t, u)(Vφ(u) + φ(u))du

]
(21)

FV IMV A = −Et
[∫ T

t
(r(u)− rψ(u))Dr+λB+λC (t, u)ψB(u)du

]
. (22)

The sum of FTDCV A and FTDDV A are often referred to as the bilateral credit value adjustment,
or BCV A. In section 6 we provide interpretations for these valuation adjustments, and in particular
we explain the origins of the FV VMV A and FV IMV A metrics as these may be less familiar.

6 Model interpretation

In this section we interpret the shareholder and firm valuation adjustments. To make our points
we follow Green [10] and set

gB(t) = −(φ(t) + ψB(t)) + (Vφ(t) + φ(t) + ψB(t))+ +RB(Vφ(t) + φ(t) + ψB(t))−

gC(t) = −(φ(t) + ψC(t)) +RC(Vφ(t) + φ(t) + ψC(t))+ + (Vφ(t) + φ(t) + ψC(t))−
(23)

so there is no margin period of risk or any other of the complexities discussed in Andersen, Phytkin
and Sokol [3]. Simplifying further we assume that the bank has entered into a (partially) collat-
eralised trade with the counterparty and is hedging it back-to-back with a clearing house on a
fully collateralised basis with collateral rate r. Consequently Vr is both the mark-to-market of the
hedge trade and the amount of collateral posted by the bank with the clearing house. From an
organisational point of view it makes sense for the bank to let the originating trading desk (e.g. a
swaps desk) manage Vr while a special valuation adjustment desk manages the different valuation
adjustments.

6.1 The collateral valuation adjustment

If the boundary conditions (23) hold and the bank and counterparty have agreed a gold standard
variation margin only CSA such that (a) φ(t) = −Vφ(t) and (b) ψB(t) = ψC(t) = 0, then it
is straightforward to show that all the shareholder and firm valuation adjustments vanish and
V̂ = V̂FV = Vφ. Interestingly, if the boundary condition gB is different, e.g. since netting does not
apply at bank default, but the other conditions continue to hold, then the shareholder value still
satisfies V̂ = Vφ whilst the firm value may no longer equal Vφ.

If V̂ = Vφ we can interpret COLV A as the difference in value between the total value and its back-
to-back hedge caused by the difference in collateralisation. In this case the bank posts or receives
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the collateral Vr at the rate r to or from the hedge counterparty, and receives or posts Vφ at the
rate rφ from or to the counterparty. It seems the bank would have to resort to unsecured funding
to plug the gap, but there is a way around this dilemma. First the bank and hedge counterparty
enter into a r vs rφ basis swap with variable notional Vφ. This swap is itself fully collateralised
at the rate r so it follows that its value is given by the integral formula (15) and thus equals
COLV A. The collateral balances and interest payments (from collateral and the basis swap) are
summarised in Table 2 and it is clear that the bank is flat so the basis swap removes any need for
unsecured funding. Put differently, the COLV A is the value of a basis swap that aligns the hedge
counterparty and counterparty CSA terms as illustrated in Figure 1.

Hedge Counterparty Basis swap Counterparty
Balance Vr COLV A −Vφ
Interest rVrdt (rφ − r)Vφdt+ rCOLV Adt −rφVφdt

= rφVφdt− rVrdt

Table 2: Bank collateral balances and cashflows for the fully collateralised case. The collateral bal-
ance COLV A for the basis swap is either on the balance sheet of the bank or the hedge counterparty
depending on the sign but displayed separately in the basis swap column for clarity.

Figure 1: Casflows in the fully collateralised case. The basis swap is denoted by a ⊗

6.2 Shareholder value metrics

Here we discuss the origin of the FCV A, FV A and MVA and for simplicity we first assume that
the counterparty is default free such that λC = 0. In the partially collateralised case the bank
needs to fill the gap Vφ + φ+ ψB with unsecured funding as shown in Figure 2 which gives rise to
FV A and MVA. Analogously to COLV A these can be interpreted as rF vs rφ and rF vs rψ basis
swaps on the notionals (i.e. unsecured funding requirements) Vφ + φ and ψB, respectively. These
swaps are internal between the trading and the valuation adjustment desks which can be seen that
the discounting in the integral formulas is done at the rate rF .

The addition of counterparty risk has two effects. First there is an FCV A that comes from the
cost of hedging the exposure V̂ −gC = U +(1−RC)(Vφ+φ+ψC)+. Second, the fact that the bank
has to hedge the loss of the remaining valuation adjustment U implies that the FV A and MVA
integrals both contain something that looks like a counterparty survival probability. Moreover,
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Figure 2: Casflows in the partially collateralised case. The basis swap is denoted by a ⊗

the hedging of the adjustments themselves must also be funded and this is why the shareholder
valuation adjustments, including FCV A are all discounted with the rate rF (as opposed to r+λB
for the firm value adjustments). Finally we note that FCV A and MVA are always liabilities,
whereas FV A can be either an asset or a liability depending on whether the portfolio and its
variation margin collateral generates or requires cash.

6.3 Firm value metrics

As discussed the firm value is the combined value to the shareholders and bondholders of the
derivative portfolio, or equivalently the the price someone would pay to take over the derivative
portfolio plus the debt funding it. The first-to-default CVA and DVA are well known and represent
the reduction and increase in firm value of not being paid and not having to pay respectively. Note
that the latter is a benefit to the bondholders of the bank, who unlike the shareholders are still
around after the default. As a consequence the boundary condition gB is present in the firm value
but not he shareholder value.

The FV VMV A and FV IMV A are firm value analogues of FV A and MVA with the difference
that the funding rate is replaced by the risk-free rate r. Positive collateral spreads rφ − r benefits
the party that posts variation margin collateral at the expense of the party receiving. Interest on
initial margin collateral on the other hand is paid by a third party custodian so increasing the rate
rψ can increase the firm value of both the bank and the counterparty whilst maintaining the firm
value symmetry.

7 Model usage

The model we have developed so far is strictly speaking only valid under the following assumptions
laid out in Sections 3 and 4:

1. Frictionless continuous time and amount trading.

2. All trade cash flows, collateral and hedge assets are denominated in a single (domestic) cur-
rency.
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3. All hedge assets are traded on a collateralised (or repo) basis.

4. The interest rate and spot asset follow a hybrid one-factor IR and local volatility dynamics.

5. The market risk factors are independent of JB and JC (e.g. no jump in S or r at counterparty
default).

6. Deterministic funding, Libor, collateral and credit spreads.

7. Single bond funding strategy used.

8. Full re-hypothecation of variation margin collateral.

9. Initial margin collateral is held by a third party custodian who pays the interest on it.

10. No basis spreads between bank debt of different seniorities.

11. Deterministic recovery rates for bank and counterparty debt and derivatives (these recovery
rates can be different).

Generalising the replication methodology to an arbitrary number of assets with more general
dynamics (e.g. stochastic volatility or more interest rate factors) and trades with arbitrary trade
events is straightforward albeit laborious. It is however not difficult to see that the valuation
adjustment formulas should hold in more general situations. For example, adding more asset classes
(denominated in the same currency) and more general dynamics merely expands the operator A
but keeps the adjustment formulas intact. Thus it should be possible to specify the dynamics of
the risk-factors directly under the chosen pricing measure and compute the required profiles using
Monte-Carlo. On the other hand, stochastic credit or funding spreads are not supported and nor
are multiple currencies.

The additivity property of the shareholder value across netting sets discussed in Burgard and Kjaer
[9] continues to hold as it is a property of the single bond funding strategy and does not depend
on the operator A. This implies that the calculations presented in this paper can be applied per
counterparty and the results aggregated to book level.

8 Conclusion

We used a semi-replication approach to derive consistent XVA formulas for shareholder and firm
values in a single currency economy with counterparty risk, collateral and funding costs. By
consistent we mean that the sum of the valuation adjustment and the reference value equals the
total shareholder or firm value, with no missing terms or double counting. Moreover, this approach
also ensures that the firm and shareholder values are consistent. The valuation adjustment formulas
are derived for the single bond funding strategy of Burgard and Kjaer [8], but since the partial
differential equation satisfied by the shareholder value holds for any funding strategy it is possible
to derive shareholder value adjustment for other funding strategies.

As in many models used in practise to compute valuation adjustments the risk-free rate, interpreted
as the repo-rate on a default-risk free zero coupon bond, is stochastic but the credit, funding, Libor
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and collateral spreads were deterministic. This added level of complexity does not alter any of
the fundamental results derived in Burgard and Kjaer [8], [9], but obviously makes any practical
implementation more laborious. To make the model useful in practise it needs to be extended to
a multi-currency economy and this is done in Kjaer [12]. Furthermore, the computation rules for
the collateral balances φ, ψB and ψC as well as the boundary conditions gB and gC also need to
be specified.
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A Details of the semi-replication

As described in Section 4.1 we consider the balance sheet of the bank consisting of the derivative
portfolio with economic value V̂ = V̂ (t, r, S, JB, JC) and a hedge and funding portfolio Π given by

Π = δSS + δZZ
T
r + δCPC +

∑
j

δF,jPF,j + αSβS + αCβC + αZβZ + αφβφ + αψ,Bβψ. (24)

Our aim is to choose the portfolio weights in (24) in a self-financing way such that V̂ +Π = 0 in all
scenarios but possibly bank default. By Section 3 the assets S, PC , Z

T
r are financed via individual

repo-accounts βS , βC , βZ which yields that the repo-constraints (7) must hold for all times t strictly
before the counterparty default time. Inserting these repo-constraints into the relation V̂ + Π = 0
gives the funding constraint

V̂ +
∑
j

δF,jPF,j + αφβφ + αψ,Bβψ = 0 (25)

which must hold at all times strictly before the first of the bank and counterparty default times.
Self financing implies that

dΠ = δSdS+ δZdZ
T
r + δCdPC +

∑
j

δF,jdPF,j +αSdβS +αCdβC +αZdβZ +αφdβφ+αψ,Bdβψ (26)

where we recall that the integrands are evaluated at t− (i.e. before any jump in JB or JC). Next
we combine the stochastic differential equations (1) and (5) with the repo-constraints (7) to obtain
the financed asset dynamics

δSdS + αSdβS = δS(dS − (γS − qS)Sdt)

δZdZ
T
r + αZdβZ = δZ

∂ZTr
∂r

(dr − ar(t, r)dt)

δCdPC + αCdβC = δC(1−RC)P−
C (λCdt− dJC)

(27)

where we recall that λC = rC−γC
1−RC . The right hand side of the last line of (27) can be written as

(1 − RC)P−
C (λCdt − dJC) := (sCDSdt − (1 − RC)dJC) which can be viewed as an idealised credit

default swap where the protection premium rate sCDS := (1−RC)λC per unit of notional is paid
continuously. This idealised credit default swap could have been used in the replication in lieu of
the risky bond PC and repo account βC .

Inserting the right hand sides of (27) along with the dynamics (1) into the hedge portfolio dynamics
(26) yields



20

dΠ =
{
− δZar(t, r)

∂ZTr
∂r

+
∑
i

δF,jP
−
F,jrF,j + δC(1−RC)P−

C λC − δSS(γS − qS)

+rφφ+ rψψB)
}
dt+ δSdS + δZ

∂ZTr
∂r

dr −
∑
j

δF,j(1−RF,j)P−
F,jdJB − δC(1−RC)P−

C dJC .

By Ito’s lemma for general semi-martingales (see e.g. Protter [15]) and the dynamics (1) the
economic value V̂ = V̂ (t, r, S, JB, JC) evolves as

dV̂ =

{
∂V̂

∂t
+A2V̂

}
dt+

∂V̂

∂r
dr +

∂V̂

∂S
dS + ∆V̂BdJB + ∆V̂CdJC (28)

with ∆V̂B := gB(t)− V̂ (t, r, S, 0, 0), ∆V̂C := gC(t)− V̂ (t, r, S, 0, 0) and

A2 :=
1

2
σ2S(t, S)S2 ∂

2

∂S2
+

1

2
σ2r (t, r)

∂2

∂r2
+ ρσr(t, r)σS(t, S)S

∂2

∂S∂r
.

If we now compare the expressions for dV̂ and dΠ and eliminate the diffusive S and r risks as well

as the counterparty default risk by setting δS = −∂V̂
∂S , δZ = −∂V̂

∂r /
∂ZTr
∂r and δC(1−RC)P−

C = ∆V̂C
then the combination of the derivative book and its hedge evolves as

d(V̂ + Π) =
{∂V̂
∂t

+A2V̂ + ar(t, r)
∂V̂

∂r
+ (γS − qS)S

∂V̂

∂S

+
∑
j

rF,jδF,jP
−
F,j + rφφ+ rψψB + λC(gC − V̂ )

}
dt

+

gB − V̂ −∑
j

(1−RF,j)δF,jP−
F,j

 dJB

as long as the bank and the counterparty are both alive. If we furthermore define the operator
A := A2 + (γS − qS)S ∂

∂S + ar(t, r)
∂
∂r and let εh := gB − V̂ −

∑
j(1−RF,j)δF,jP

−
F,j then

d(V̂ + Π) =
{∂V̂
∂t

+AV̂ +
∑
j

rF,jδF,jP
−
F,j + rφφ+ rψψB + λC(gC − V̂ )

}
dt

+ εhdJB.

(29)

The no basis condition (3), funding constraint (25) and the definition of εh imply that

∑
j

rF,jδF,jPF,j = −r(V̂ + φ+ ψB) + λB(gB − V̂ )− λBεh
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which when inserted into (29) yields the final expression for the (partially) hedged balance sheet
dynamics as

d(V̂ + Π) =
{∂V̂
∂t

+AV̂ + λB(gB − V̂ ) + λC(gC − V̂ )− r(V̂ + φ+ ψB) + rφφ+ rψψB

}
dt

+ εh(dJB − λBdt).
(30)

B Derivation of the valuation adjustments

In this section we derive the shareholder and firm value adjustments. Since they apply strictly
before the default of any of the parties we write P−

F,j = PF,j from now on.

B.1 Shareholder value adjustments

We first insert the single bond strategy δFPF = −V̂ −φ−ψB into the balance sheet dynamics (29)
before setting the dt−terms to zero to obtain

∂V̂

∂t
+AV̂ − (rF + λC)V̂ = −λCgC + (rF − rφ)φ+ (rF − rψ)ψB

V̂ (T, r, S, 0, 0) = H(r, S).

(31)

The partial differential equation (31) is expressed directly in terms of the funding rate rF rather
than λB. Next we insert the ansatz V̂ = Vφ + U into (31) and subtract rφVφ from both sides to
obtain

∂Vφ
∂t

+AVφ − (rF + λC)Vφ − rφVφ +
∂U

∂t
+AU − (rF + λC)U = −rφVφ − λCgC + (rF − rφ)φ

+ (rF − rψ)ψB.

Vφ(T, r, S) + U(T, r, S) = H(r, S).

Recognising the PDE (12) with ξ = rφ satisfied by Vφ on the left hand side allows us to eliminate
terms, and after some algebra we get

∂U

∂t
+AU − (rF + λC)U = λC(Vφ − gC) + (rF − rφ)(Vφ + φ) + (rF − rψ)ψB

U(T, r, S) = 0.
(32)

Finally the Feynman-Kac theorem gives the solution U = FCV A + FV A + MVA where the
valuation adjustments are given in (16) to (18).

The integral formula for COLV A is proved in a similar fashion by inserting the ansatz Vr =
Vφ − COLV A into the PDE (12) with ξ = r.
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B.2 Firm value adjustments

By Section 4.3 the firm value is given as the solution to the PDE

∂V̂FV
∂t

+AV̂FV − (r + λB + λC)V̂FV = −λBgB − λCgC − (rφ − r)φ− (rψ − r)ψB

V̂FV(T, r, S, 0, 0) = H(r, S).

(33)

The process of deriving the firm value adjustments is very similar to that of the shareholder value
adjustments in Section B.1. First the ansatz V̂FV = Vφ +UFV is inserted into (33). Second rφVφ is
subtracted from both sides of the PDE and the PDE (12) with ξ = rφ is used to eliminate terms.
This yields

∂UFV

∂t
+AUFV − (r + λB + λC)UFV = λB(Vφ − gB) + λC(Vφ − gC)− (rφ − r)(Vφ + φ)− (rψ − r)ψB

UFV(T, r, S) = 0
(34)

so by the Fyenman-Kac theorem UFV = FTDCV A+FTDCV A+FVMV V A+FV IMV A where
the valuation adjustments are given in (19) to (22).

C Multiple netting sets and CSAs

Until now we have assumed that all the trades belong to a single netting set and CSA. We now
generalise this and partition the trades of the portfolio into disjoint netting sets NSl. The trades
of a given netting set are then further partitioned into disjoint credit support annexes CSAk such
that trades belonging to the same CSA also belong to the same netting set. The CSA discounted
value of the trades per netting set and CSA are denoted Vφ,l and Vφ,k respectively. Furthermore,
each CSA has variation and initial margin accounts βφ,k and βψ,k with rates rφ,k and rψ,k. We can
now generalise (24) to

Π = δSS+δZZ
T
r +δCPC +

∑
j

δF,jPF,j +αSβS +αCβC +αZβZ +
∑
k

(αφ,kβφ,k + αψ,B,kβψ,k) . (35)

As the closeout process is done per netting set and the proceeds are additive it holds that gB =∑
l gB,l and gC =

∑
l gC,l. Applying the semi-replication arguments of Section A to these boundary

conditions and the replicating portfolio (35) give the shareholder value as

V̂ = Vr +
∑
k

COLV Ak +
∑
l

FCV Al +
∑
k

FV Ak +
∑
k

MVAk

with
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COLV Ak = −Et
[∫ T

t
(rφ,k(u)− r(u))Dr(t, u)Vφ,k(u)du

]
FCV Al = −Et

[∫ T

t
λC(u)DrF+λC (t, u)(Vφ,l(u)− gC,l(u))du

]
FV Ak = −Et

[∫ T

t
(rF (u)− rφ,k(u))DrF+λC (t, u)(Vφ,k(u) + φk(u))du

]
MVAk = −Et

[∫ T

t
(rF (u)− rψ,k(u))DrF+λC (t, u)ψB,k(u)du

]
.

Similarly the firm value is given by

V̂FV = Vr +
∑
k

COLV Ak +
∑
l

FTDCV Al +
∑
l

FTDDV Al +
∑
k

FV VMV Ak +
∑
k

FV IMV Ak

with COLV Ak given above and

FTDCV Al = −Et
[∫ T

t
λC(u)Dr+λB+λC (t, u)(Vφ,l(u)− gC,l(u))du

]
FTDDV Al = −Et

[∫ T

t
λB(u)Dr+λB+λC (t, u)(Vφ,l(u)− gB,l(u))du

]
FV VMV Ak = −Et

[∫ T

t
(r(u)− rφ,k(u))Dr+λB+λC (t, u)(Vφ,k(u) + φk(u))du

]
FV IMV Ak = −Et

[∫ T

t
(r(u)− rψ,k(u))Dr+λB+λC (t, u)ψB,k(u)du

]
.

In summary we obtain credit value adjustments subscripted by the netting set index l and fund-
ing/margin value adjustments indexed by the CSA index k. The counterparty level value is then
obtained by adding these numbers together.

D Funding curve calibration

Under the single bond funding strategy assumed from Section 5 the bank pays the rate rF (t) =
r(t) + sF (t) for (variable) overnight funding with recovery RF . Now assume that the bank can
also enter into a so called term funding agreement whereby they agree to pay the fixed spread sF,k
over the period [0, Tk). Since the overnight and term funding spreads are both deterministic it is

straightforward to show that the relation
∫ Tk
0 sF (t)dt = sF,kTk must hold for each tenor Tk which

allows us to find a piecewise constant sF (t) by bootstrapping. Equivalently we may define the
risky discount curve ZTF (t) by
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ZTF (t) := Et [DrF (t, T )]

= ZTr (t)DsF (t, T )

and then calibrate ZTkF (0) such that each term deposit reprices at par via the relation ZTkF (t) =
Et
[
Dr+sF,k(t, Tk)

]
.
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